A New Algorithm for Finding Mixed Layer Depths with Applications to Argo Data and Subantarctic Mode Water Formation

James Holte Scripps Institution of Oceanography, La Jolla, California

Search for other papers by James Holte in
Current site
Google Scholar
PubMed
Close
and
Lynne Talley Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Lynne Talley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new hybrid method for finding the mixed layer depth (MLD) of individual ocean profiles models the general shape of each profile, searches for physical features in the profile, and calculates threshold and gradient MLDs to assemble a suite of possible MLD values. It then analyzes the patterns in the suite to select a final MLD estimate. The new algorithm is provided in online supplemental materials. Developed using profiles from all oceans, the algorithm is compared to threshold methods that use the criteria and to gradient methods using 13 601 Argo profiles from the southeast Pacific and southwest Atlantic Oceans. In general, the threshold methods find deeper MLDs than the new algorithm and the gradient methods produce more anomalous MLDs than the new algorithm. When constrained to using only temperature profiles, the algorithm offers a clear improvement over the temperature threshold and gradient methods; the new temperature algorithm MLDs more closely approximate the density algorithm MLDs than the temperature threshold and gradient MLDs. The algorithm is applied to profiles from a formation region of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW). The density algorithm finds that the deepest MLDs in this region routinely reach 500 dbar and occur north of the mean Subantarctic Front in the southeastern Pacific Ocean. The deepest MLDs typically occur in August and September and are congruent with the subsurface salinity minimum, a signature of AAIW.

Corresponding author address: James Holte, Scripps Institution of Oceanography, 9500 Gilman Drive, Mail Code 0208, La Jolla, CA 92093. Email: jholte@ucsd.edu

Abstract

A new hybrid method for finding the mixed layer depth (MLD) of individual ocean profiles models the general shape of each profile, searches for physical features in the profile, and calculates threshold and gradient MLDs to assemble a suite of possible MLD values. It then analyzes the patterns in the suite to select a final MLD estimate. The new algorithm is provided in online supplemental materials. Developed using profiles from all oceans, the algorithm is compared to threshold methods that use the criteria and to gradient methods using 13 601 Argo profiles from the southeast Pacific and southwest Atlantic Oceans. In general, the threshold methods find deeper MLDs than the new algorithm and the gradient methods produce more anomalous MLDs than the new algorithm. When constrained to using only temperature profiles, the algorithm offers a clear improvement over the temperature threshold and gradient methods; the new temperature algorithm MLDs more closely approximate the density algorithm MLDs than the temperature threshold and gradient MLDs. The algorithm is applied to profiles from a formation region of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW). The density algorithm finds that the deepest MLDs in this region routinely reach 500 dbar and occur north of the mean Subantarctic Front in the southeastern Pacific Ocean. The deepest MLDs typically occur in August and September and are congruent with the subsurface salinity minimum, a signature of AAIW.

Corresponding author address: James Holte, Scripps Institution of Oceanography, 9500 Gilman Drive, Mail Code 0208, La Jolla, CA 92093. Email: jholte@ucsd.edu

Supplementary Materials

    • Supplemental Materials (ZIP 42.93 MB)
Save
  • Antonov, J. A., Locarnini R. A. , Boyer T. P. , Garcia H. E. , and Mishonov A. , 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 50 pp.

    • Search Google Scholar
    • Export Citation
  • Brainerd, K. E., and Gregg M. C. , 1995: Surface mixed and mixing layer depths. Deep-Sea Res. I, 42 , 15211543.

  • Chen, D., Busalacchi A. J. , and Rothstein L. M. , 1994: The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacific Ocean. J. Geophys. Res., 99 , 2034520359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., and Roemmich D. , 1991: A comparison of measured and wind-derived Ekman transport at 11°N in the Atlantic Ocean. J. Phys. Oceanogr., 21 , 869878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., Wang Q. , and Bourke R. H. , 1999: A geometric model for the Beaufort/Chukchi Sea thermohaline structure. J. Atmos. Oceanic Technol., 16 , 613632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deacon, G. E. R., 1937: The hydrology of the Southern Ocean. Discovery Rep., 15 , 1124.

  • de Boyer Montégut, C., Madec G. , Fischer A. S. , Lazar A. , and Iudicone D. , 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109 , C12003. doi:10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., Sprintall J. , Gille S. T. , and Talley L. , 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res., 113 , C06013. doi:10.1029/2006JC004051.

    • Search Google Scholar
    • Export Citation
  • England, M. H., Godfrey J. S. , Hirst A. C. , and Tomczak M. , 1993: The mechanism for Antarctic Intermediate Water renewal in a world ocean model. J. Phys. Oceanogr., 23 , 15531560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and Talley L. D. , 2001: Mode waters. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 373–386.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., Rochford P. A. , and Hurlburt H. E. , 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105 , 1680316821.

  • Kara, A. B., Rochford P. A. , and Hurlburt H. E. , 2003: Mixed layer depth variability over the global ocean. J. Geophys. Res., 108 , 3079. doi:10.1029/2000JC000736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeling, R. F., and Stephens B. B. , 2001: Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography, 16 , 112131. doi:10.1029/2000PA000529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., Davis R. E. , and Owens W. B. , 2002: Observations of open-ocean deep convection in the Labrador Sea from subsurface floats. J. Phys. Oceanogr., 32 , 511526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., Burgett R. , and Boyer T. P. , 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Lorbacher, K., Dommenget D. , Niiler P. P. , and Köhl A. , 2006: Ocean mixed layer depth: A subsurface proxy of ocean-atmosphere variability. J. Geophys. Res., 111 , C07010. doi:10.1029/2003JC002157.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., and Lindstrom E. , 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96 , 33433358.

  • Marshall, J., and Schott F. , 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37 , 164.

  • McCartney, M. S., 1977: Subantarctic Mode Water. A Voyage of Discovery: George Deacon 70th Anniversary Volume, M. V. Angel, Ed., Pergamon, 103–119.

    • Search Google Scholar
    • Export Citation
  • Monterey, G., and Levitus S. , 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA Atlas NESDIS 14, 96 pp.

  • Noh, Y., Jang C. J. , Yamagata T. , Chu P. C. , and Kim C. H. , 2002: Simulation of more realistic upper-ocean processes from an OGCM with a new ocean mixed layer model. J. Phys. Oceanogr., 32 , 12841307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., Siegel D. A. , and Gautier C. , 1996: Ocean mixed layer radiant heating and solar penetration: A global analysis. J. Climate, 9 , 22652280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oka, E., Talley L. D. , and Suga T. , 2007: Temporal variability of winter mixed layer in the mid-to high-latitude North Pacific. J. Oceanogr., 63 , 293307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., Whitworth T. , and Nowlin W. D. , 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42 , 641673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pahnke, K., and Zahn R. , 2005: Millennial-scale Antarctic Intermediate Water variability over the past 340,000 years as recorded by benthic foraminiferal δ13C in the mid-depth southwest Pacific. Extended Abstracts, Spring Meeting, New Orleans, LA, Amer. Geophys. Union, A4+.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2001: Argo: The global array of profiling floats. Observing the Oceans in the 21st Century, K. J. Koblinksy and N. R. Smith, Eds., Bureau of Meteorology, 604 pp.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and Tomczak M. , 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97 , 73057316.

  • Sprintall, J., and Roemmich D. , 1999: Characterizing the structure of the surface layer in the Pacific Ocean. J. Geophys. Res., 104 , 2329723311.

  • Talley, L. D., 1996: Antarctic Intermediate Water in the South Atlantic. The South Atlantic: Present and Past Circulation, G. Wefer et al., Eds., Springer-Verlag, 219–238.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1999: Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr., Vol. 112, Amer. Geophys. Union, 1–22.

    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and Fine I. V. , 2003: Estimating mixed layer depth from oceanic profile data. J. Atmos. Oceanic Technol., 20 , 319329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., and Talley L. D. , 1998: A Pacific hydrographic section at 88°W: Water-property distribution. J. Geophys. Res., 103 , 1289912918.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3430 1237 75
PDF Downloads 3559 841 74