Accuracy of the IMET Sensor Package in the Subtropics

Keir Colbo Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Keir Colbo in
Current site
Google Scholar
PubMed
Close
and
Robert A. Weller Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Robert A. Weller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The accuracies of the meteorological sensors (air temperature, relative humidity, barometric pressure, near-surface temperature, longwave and shortwave radiation, and wind speed and direction) that compose the Improved Meteorological (IMET) system used on buoys at long-term ocean time series sites known as ocean reference stations (ORS) are analyzed to determine their absolute error characteristics. The predicted errors are compared to in situ measurement discrepancies and other observations (direct flux shipboard sensors) to confirm the predictions. The meteorological errors are then propagated through bulk flux formulas and the Coupled Ocean–Atmosphere Response Experiment (COARE) algorithm to give predicted errors for the heat flux components, the freshwater flux, and the momentum flux. Absolute errors are presented for three frequency bands [instantaneous (1-min sampling), diurnal, and annual]. The absolute uncertainty in the annually averaged net heat flux is found to be 8 W m−2 for conditions similar to the current ORS deployments in the subtropics.

Corresponding author address: Dr. Robert A. Weller, Woods Hole Oceanographic Institution, Clark 204A MS 29, Woods Hole, MA 02543. Email: rweller@whoi.edu

Abstract

The accuracies of the meteorological sensors (air temperature, relative humidity, barometric pressure, near-surface temperature, longwave and shortwave radiation, and wind speed and direction) that compose the Improved Meteorological (IMET) system used on buoys at long-term ocean time series sites known as ocean reference stations (ORS) are analyzed to determine their absolute error characteristics. The predicted errors are compared to in situ measurement discrepancies and other observations (direct flux shipboard sensors) to confirm the predictions. The meteorological errors are then propagated through bulk flux formulas and the Coupled Ocean–Atmosphere Response Experiment (COARE) algorithm to give predicted errors for the heat flux components, the freshwater flux, and the momentum flux. Absolute errors are presented for three frequency bands [instantaneous (1-min sampling), diurnal, and annual]. The absolute uncertainty in the annually averaged net heat flux is found to be 8 W m−2 for conditions similar to the current ORS deployments in the subtropics.

Corresponding author address: Dr. Robert A. Weller, Woods Hole Oceanographic Institution, Clark 204A MS 29, Woods Hole, MA 02543. Email: rweller@whoi.edu

Save
  • Anderson, S. P., and Baumgartner M. F. , 1998: Radiative heating errors in naturally ventilated air temperature measurements made from buoys. J. Atmos. Oceanic Technol., 15 , 157173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, I. J., Minnett P. J. , Maillet K. A. , Donlon C. J. , Hook S. J. , Jessup A. T. , and Nightingale T. J. , 2004: The Miami 2001 infrared radiometer calibration and intercomparison: Part II: Shipboard results. J. Atmos. Oceanic Technol., 21 , 268283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, F., and Fairall C. , 2006: A guide to making climate quality meteorological and flux measurements at sea. NOAA Tech. Memo. OAR PSD-311, 81 pp.

    • Search Google Scholar
    • Export Citation
  • Burns, S. P., and Coauthors, 1999: Comparisons of aircraft, ship, and buoy meteorological measurements from TOGA COARE. J. Geophys. Res., 104 , 3085330883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burns, S. P., and Coauthors, 2000: Comparisons of aircraft, ship, and buoy radiation and SST measurements from TOGA COARE. J. Geophys. Res., 105 , 1562715652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bush, C. B., Valero F. P. J. , Simpson A. S. , and Bignone L. , 2000: Characterization of thermal effects in pyranometers: A data correction algorithm for improved measurement of surface insolation. J. Atmos. Oceanic Technol., 17 , 165175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Godfrey J. S. , Wick G. A. , Edson J. B. , and Young G. S. , 1996a: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101 , 12951308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Rogers D. P. , Edson J. B. , and Young G. S. , 1996b: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Persson P. O. G. , Bradley E. F. , Payne R. E. , and Anderson S. P. , 1998: A new look at calibration and use of Eppley precision infrared radiometers. Part I: Theory and application. J. Atmos. Oceanic Technol., 15 , 12291242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., 1988: Numerical models of the raingauge exposure problem, field experiments and an improved collector design. Quart. J. Roy. Meteor. Soc., 114 , 14851516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, G. C., 1976: Development and testing of a no-moving parts static pressure inlet for use on ocean buoys. NOAA Data Buoy Office Progress Rep. 01-6-038-115, 43 pp.

    • Search Google Scholar
    • Export Citation
  • Hosom, D. S., Weller R. A. , Payne R. E. , and Prada K. E. , 1995: The IMET (Improved Meteorology) ship and buoy systems. J. Atmos. Oceanic Technol., 12 , 527540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbard, K. G., Lin X. , and Walter-Shea E. A. , 2001: The effectiveness of the ASOS, MMTS, Gill, and CRS air temperature radiation shields. J. Atmos. Oceanic Technol., 18 , 851864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z., Charlock T. P. , and Rutledge K. , 2002: Analysis of broadband solar radiation and albedo over the ocean surface at COVE. J. Atmos. Oceanic Technol., 19 , 15851601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koschemeider, H., 1934: Methods and results of definite rain measurements. Mon. Wea. Rev., 62 , 57.

  • Lin, X., Hubbard K. G. , Walter-Shea E. A. , Brandle J. R. , and Meyer G. E. , 2001: Some perspectives on recent in situ air temperature observations: Modeling the microclimate inside the radiation shields. J. Atmos. Oceanic Technol., 18 , 14701484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacWhorter, M. A., and Weller R. A. , 1991: Error in measurements of incoming shortwave radiation made from ships and buoys. J. Atmos. Oceanic Technol., 8 , 108117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nešpor, V., and Sevruk B. , 1999: Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J. Atmos. Oceanic Technol., 16 , 450464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascal, R. W., and Josey S. A. , 2000: Accurate radiometric measurements of the atmospheric longwave flux at the sea surface. J. Atmos. Oceanic Technol., 17 , 12711282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, R. E., and Anderson S. P. , 1999: A new look at calibration and use of Eppley precision infrared radiometers. Part II: Calibration and use of the Woods Hole Oceanographic Institution improved meteorology precision infrared radiometer. J. Atmos. Oceanic Technol., 16 , 739751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philipona, R., Frohlich C. , and Betz C. , 1995: Characterization of pyrgeometers and the accuracy of atmospheric long-wave radiation measurements. Appl. Opt., 34 , 15981605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philipona, R., and Coauthors, 2001: Atmospheric longwave irradiance uncertainty: Pyrgeometers compared to an absolute sky-scanning radiometer, atmospheric emitted radiance interferometer, and radiative transfer model calculations. J. Geophys. Res., 106 , 2812928141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., Ed. 2000: Intercomparison and validation of ocean-atmosphere energy flux fields—Final report of the Joint WCRP/SCOR Working Group on Air-Sea Fluxes. WCRP-112, WMO/TD 1036, 306 pp.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., Bradley F. , and Lukas R. , 2004: The interface or air–sea component of the TOGA Coupled Ocean-Atmosphere Response Experiment and its impact on subsequent air–sea interaction studies. J. Atmos. Oceanic Technol., 21 , 223257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yelland, M. J., Moat B. I. , Pascal R. W. , and Berry D. I. , 2002: CFD model estimates of the airflow distortion over research ships and the impact on momentum flux measurements. J. Atmos. Oceanic Technol., 19 , 14771499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., and Brown R. A. , 1998: Scatterometer observations at high wind speeds. J. Appl. Meteor., 37 , 14121420.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 572 217 10
PDF Downloads 307 114 5