Mean Dynamic Topography of the Ocean Derived from Satellite and Drifting Buoy Data Using Three Different Techniques

Nikolai Maximenko International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Nikolai Maximenko in
Current site
Google Scholar
PubMed
Close
,
Peter Niiler Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Peter Niiler in
Current site
Google Scholar
PubMed
Close
,
Luca Centurioni Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Luca Centurioni in
Current site
Google Scholar
PubMed
Close
,
Marie-Helene Rio Collecte Localisation Satellites, Ramonville Saint-Agne, France

Search for other papers by Marie-Helene Rio in
Current site
Google Scholar
PubMed
Close
,
Oleg Melnichenko International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, and Marine Hydrophysical Institute, National Academy of Sciences of Ukraine, Sevastopol, Ukraine

Search for other papers by Oleg Melnichenko in
Current site
Google Scholar
PubMed
Close
,
Don Chambers Center for Space Research, The University of Texas at Austin, Austin, Texas

Search for other papers by Don Chambers in
Current site
Google Scholar
PubMed
Close
,
Victor Zlotnicki Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Victor Zlotnicki in
Current site
Google Scholar
PubMed
Close
, and
Boris Galperin College of Marine Science, University of South Florida, St.Petersburg, Florida

Search for other papers by Boris Galperin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Presented here are three mean dynamic topography maps derived with different methodologies. The first method combines sea level observed by the high-accuracy satellite radar altimetry with the geoid model of the Gravity Recovery and Climate Experiment (GRACE), which has recently measured the earth’s gravity with unprecedented spatial resolution and accuracy. The second one synthesizes near-surface velocities from a network of ocean drifters, hydrographic profiles, and ocean winds sorted according to the horizontal scales. In the third method, these global datasets are used in the context of the ocean surface momentum balance. The second and third methods are used to improve accuracy of the dynamic topography on fine space scales poorly resolved in the first method. When they are used to compute a multiyear time-mean global ocean surface circulation on a 0.5° horizontal resolution, both contain very similar, new small-scale midocean current patterns. In particular, extensions of western boundary currents appear narrow and strong despite temporal variability and exhibit persistent meanders and multiple branching. Also, the locations of the velocity concentrations in the Antarctic Circumpolar Current become well defined. Ageostrophic velocities reveal convergent zones in each subtropical basin. These maps present a new context in which to view the continued ocean monitoring with in situ instruments and satellites.

Corresponding author address: Nikolai Maximenko, IPRC/SOEST, University of Hawaii at Manoa, 1680 East West Road, POST Bldg. #401, Honolulu, HI 96822. Email: maximenk@hawaii.edu

Abstract

Presented here are three mean dynamic topography maps derived with different methodologies. The first method combines sea level observed by the high-accuracy satellite radar altimetry with the geoid model of the Gravity Recovery and Climate Experiment (GRACE), which has recently measured the earth’s gravity with unprecedented spatial resolution and accuracy. The second one synthesizes near-surface velocities from a network of ocean drifters, hydrographic profiles, and ocean winds sorted according to the horizontal scales. In the third method, these global datasets are used in the context of the ocean surface momentum balance. The second and third methods are used to improve accuracy of the dynamic topography on fine space scales poorly resolved in the first method. When they are used to compute a multiyear time-mean global ocean surface circulation on a 0.5° horizontal resolution, both contain very similar, new small-scale midocean current patterns. In particular, extensions of western boundary currents appear narrow and strong despite temporal variability and exhibit persistent meanders and multiple branching. Also, the locations of the velocity concentrations in the Antarctic Circumpolar Current become well defined. Ageostrophic velocities reveal convergent zones in each subtropical basin. These maps present a new context in which to view the continued ocean monitoring with in situ instruments and satellites.

Corresponding author address: Nikolai Maximenko, IPRC/SOEST, University of Hawaii at Manoa, 1680 East West Road, POST Bldg. #401, Honolulu, HI 96822. Email: maximenk@hawaii.edu

Save
  • Centurioni, L. R., Ohlmann J. C. , and Niiler P. P. , 2008: Permanent meanders in the California Current System. J. Phys. Oceanogr., 38 , 16901710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosby, D. S., Breaker L. C. , and Gemmill W. H. , 1993: A proposed definition for vector correlation in geophysics: Theory and application. J. Atmos. Oceanic Technol., 10 , 355367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., LeTraon P. Y. , and Reverdin G. , 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105 , (C8). 1947719489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Guinehut, S., 2002: Vers une utilisation combinée des données altimétriques et des mesures des flotteurs profilants. Ph.D. thesis, Université Paul Sabatier, 168 pp.

  • Guinehut, S., and Larnicol G. , 1999: Impact de la salinité dans le calcul des hauteurs dynamiques—Etude effectuée à partir des sections WOCE de l’océan Atlantique. Collecte Localisation Satellites Contract CNES/CLS 794/98/CNES/7235, 27 pp.

    • Search Google Scholar
    • Export Citation
  • Hernandez, F., Schaeffer P. , Calvez M-H. , Dorandeu J. , Faugere Y. , and Mertz F. , 2001: Surface Moyenne Oceanique: Support Scientifique à la mission altimetrique Jason-1, et à une mission micro-satellite altimétrique. Collecte Localisation Satellites Final Rep. CLS/DOS/NT/00.341, 150 pp.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 2005: Nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res., 110 , C11008. doi:10.1029/2004JC002753.

  • Imawaki, S., Uchida H. , Ichikawa H. , Fukasawa M. , and Umatani S. , and ASUKA Group, 2001: Satellite altimeter monitoring the Kuroshio Transport south of Japan. Geophys. Res. Lett., 28 , 1720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juliano, M. F., and Alves M. L. G. R. , 2007: The Atlantic subtropical front/current systems of Azores and St. Helena. J. Phys. Oceanogr., 37 , 25732598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., 1998: Modeling and parameterizing the ocean planetary boundary layer. Ocean Modeling and Parameterization. E. P. Chassignet and J. Verron, J., Eds., Kluwer Academic, 81–120.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998. NOAA Atlas NESDIS 18, 346 pp.

  • Mann, C. R., 1967: The termination of the Gulf Stream and the beginning of the North Atlantic Current. Deep-Sea Res., 14 , 337359.

  • Maximenko, N. A., and Niiler P. P. , 2005: Hybrid decade-mean global sea level with mesoscale resolution. Recent Advances in Marine Science and Technology, 2004, N. Saxena, Ed., PACON International, 55–59.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., and Niiler P. P. , 2008: Tracking ocean debris. IPRC Climate, Vol. 8, No. 2, International Pacific Research Center, 14–16. [Available online at http://iprc.soest.hawaii.edu/publications/newsletters/newsletter_sections/iprc_climate_vol8_2/tracking_ocean_debris.pdf].

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., Melnichenko O. V. , Niiler P. P. , and Sasaki H. , 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett., 35 , L08603. doi:10.1029/2008GL033267.

    • Search Google Scholar
    • Export Citation
  • Nerem, R. S., Tapley B. D. , and Shum C. K. , 1990: Determination of the ocean general circulation using Geosat altimetry. J. Geophys. Res., 95 , (C3). 31633179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 2001a: The world ocean surface circulation. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 193–204.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 2001b: Global ocean circulation observations. Observing the Oceans in the 21st Century, C. J. Koblinsky and N. R. Smith, Eds., Australian Bureau of Meteorology, 306–323.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., Lee D. K. , Young W. , and Hu L. H. , 1991: Expendable current profiler (XCP) section across the North Pacific at 25°N. Deep-Sea Res., 38 , S45S61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., Piacsek S. , Neuberg L. , and Warn-Varnas A. , 1992: Scales of SST variability of the Iceland-Faeroe Front. J. Geophys. Res., 97 , (C11). 1777717785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., Maximenko N. A. , and McWilliams J. C. , 2003: Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys. Res. Lett., 30 , 2164. doi:10.1029/2003GL018628.

    • Search Google Scholar
    • Export Citation
  • Ochoa, J., and Niiler P. P. , 2007: Vertical vorticity balance in meanders downstream the Agulhas retroflection. J. Phys. Oceanogr., 37 , 740744.

    • Search Google Scholar
    • Export Citation
  • Pascual, A., Faugère Y. , Larnicol G. , and Le Traon P-Y. , 2006: Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett., 33 , L02611. doi:10.1029/2005GL024633.

    • Search Google Scholar
    • Export Citation
  • Pazan, S. E., and Niiler P. , 2004: New global drifter data set available. Eos, Trans. Amer. Geophys. Union, 85 .doi:10.1029/2004EO020007.

    • Search Google Scholar
    • Export Citation
  • Ralph, E. A., Bi K. , Niiler P. P. , and du Penhoat Y. A. , 1997: A Lagrangian description of the western equatorial Pacific response to the wind burst of December 1992: Heat advection in the warm pool. J. Climate, 10 , 17061721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reigber, C., Schmidt R. , Flechtner F. , König R. , Meyer U. , Neumayer K-H. , Schwintzer P. , and Zhu S. Y. , 2005: An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodyn., 39 , 110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reverdin, G., Niiler P. P. , and Valdimarsson H. , 2003: North Atlantic Ocean surface currents. J. Geophys. Res., 108 , (C1). 30023004.

  • Richardson, P. L., 1989: Worldwide ship drift distributions identify missing data. J. Geophys. Res., 94 , 61696176.

  • Rio, M-H., and Hernandez F. , 2003: High-frequency response of wind-driven currents measured by drifting buoys and altimetry over the world ocean. J. Geophys. Res., 108 , 3283. doi:10.1029/2002JC001655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, M-H., and Hernandez F. , 2004: A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109 , C12032. doi:10.1029/2003JC002226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, M-H., Schaeffer P. , and Lemoine J. M. , 2005: The estimation of the ocean mean dynamic topography through the combination of altimetric data, in-situ measurements and GRACE geoid: From global to regional studies. Proc. GOCINA Int. workshop, Luxembourg, Centre Européen de Géodynamique et de Séismologie.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., Ed. 1983: Eddies in Marine Science. Springer-Verlag, 609 pp.

  • Rudnick, D. L., 1996: Intensive surveys of the Azores Front 2. Inferring the geostrophic and vertical velocity fields. J. Geophys. Res., 101 , 1629116303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., and Richardson P. L. , 1991: On the sources of the Florida Current. Deep-Sea Res., 38 , (Suppl.). 389409.

  • Siedler, G., Church J. , and Gould J. , Eds. 2001: Ocean Circulation and Climate. Academic Press, 715 pp.

  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27 , 17431769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., Johnson M. W. , and Flemming R. H. , 1942: The Oceans: Their Physics, Chemistry, and General Biology. Prentice-Hall, 1087 pp.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., Chambers D. P. , Bettadpur S. , and Ries J. C. , 2003: Large scale ocean circulation from the GRACE GGM01 Geoid. Geophys. Res. Lett., 30 , 2163. doi:10.1029/2003GL018622.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., Bettadpur S. , Watkins M. , and Reigber C. , 2004: The Gravity Recovery and Climate Experiment: Mission overview and early results. Geophys. Res. Lett., 31 , L09607. doi:10.1029/2004GL019920.

    • Search Google Scholar
    • Export Citation
  • Uchida, H., and Imawaki S. , 2003: Eulerian mean surface velocity field derived by combining drifter and satellite altimeter data. Geophys. Res. Lett., 30 , 1229. doi:10.1029/2002GL016445.

    • Search Google Scholar
    • Export Citation
  • Uchida, H., Imawaki S. , and Hu J-H. , 1998: Comparison of Kuroshio surface velocities derived from satellite altimeter and drifting buoy data. J. Oceanogr., 54 , 115122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uda, M., and Hasunuma K. , 1969: The eastward subtropical countercurrent in the western North Pacific Ocean. J. Oceanogr. Soc. Japan, 25 , 201210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and Gaposchkin E. M. , 1980: On using satellite altimetry to determine the general circulation of the oceans, with application to geoid improvement. Rev. Geophys., 18 , 725745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S-P., Liu W. T. , Liu Q. , and Nonaka M. , 2001: Far-reaching effect of the Hawaiian Islands on the Pacific Ocean-atmosphere system. Science, 292 , 20572060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zlotnicki, V., and Marsh J. G. , 1989: Altimetry, ship gravimetry, and the general circulation of the North Atlantic. Geophys. Res. Lett., 16 , 10111014.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1300 468 32
PDF Downloads 877 253 28