• Ackerman, S. A., Strabala K. I. , Menzel W. P. , Frey R. A. , Moeller C. C. , and Gumley L. E. , 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103 , 3214132157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bard, Y., 1973: Nonlinear Parameter Estimation. Academic Press, 300 pp.

  • Cayula, J-F., and Cornillon P. , 1996: Cloud detection from a sequence of SST images. Remote Sens. Environ., 55 , 8088.

  • Dash, P., Ignatov A. , Kihai Y. , and Sapper J. , 2010: The SST quality monitor (SQUAM). J. Atmos. Oceanic Technol., in press.

  • Derrien, M., and Le Gleau H. , 2005: MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens., 26 , 47074732.

  • Dybbroe, A., Karlsson K. G. , and Thoss A. , 2005: NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part I: Algorithm description. J. Appl. Meteor., 44 , 3954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, R. C., and Woods R. E. , 2003: Digital Image Processing. Pearson, 793 pp.

  • Heidinger, A., 2004: CLAVR cloud mask algorithm theoretical basis document. NOAA/NESDIS/STAR, 68 pp.

  • Heidinger, A., Anne V. R. , and Dean C. , 2002: Using MODIS to estimate cloud contamination of the AVHRR data record. J. Atmos. Oceanic Technol., 19 , 586601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, I. J., and Coauthors, 2004: Global operational SST and aerosol products from AVHRR: Current status, diagnostics, and potential enhancements. Preprints, 13th Conf. on Satellite Meteorology and Oceanography, Norfolk, VA, Amer. Meteor. Soc., P5.17. [Available online at http://ams.confex.com/ams/pdfpapers/78049.pdf].

    • Search Google Scholar
    • Export Citation
  • Kriebel, K. T., Gesell G. , Kastner M. , and Mannstein H. , 2003: The cloud analysis tool APOLLO: Improvements and validation. Int. J. Remote Sens., 24 , 23892408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X-M., Ignatov A. , and Kihai Y. , 2009: Implementation of the Community Radiative Transfer Model (CRTM) in Advanced Clear-Sky Processor for Oceans (ACSPO) and validation against nighttime AVHRR radiances. J. Geophys. Res., 114 , D06112. doi:10.1029/2008JD010960.

    • Search Google Scholar
    • Export Citation
  • Martins, J. V., Tanre D. , Remer L. , Kaufman Y. , Mattoo S. , and Levy R. , 2002: MODIS cloud screening for remote sensing of aerosols over oceans using spatial variability. Geophys. Res. Lett., 29 , 8009. doi:10.1029/2001GL013252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maturi, E., Harris A. , Merchant C. , Mittaz J. , Potash B. , Meng W. , and Sapper J. , 2008: NOAA’s sea surface temperature products from operational geostationary satellites. Bull. Amer. Meteor. Soc., 89 , 18771888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClain, E. P., Pichet W. G. , and Walton C. C. , 1985: Comparative performance of AVHRR-based multichannel sea-surface temperatures. J. Geophys. Res., 90 , 1158711601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., Harris A. R. , Maturi E. , and MacCallum S. , 2005: Probabilistic physically based cloud screening of satellite infrared imagery for operational sea surface temperature retrieval. Quart. J. Roy. Meteor. Soc., 131 , 27352755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., Horrocs L. A. , Eyre J. R. , and O’Carroll A. G. , 2006: Retrievals of sea surface temperature from infrared imagery: origin and form of systematic errors. Quart. J. Roy. Meteor. Soc., 132 , 12051223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., Le Borgne P. , Marsouin A. , and Roquet H. , 2008: Optimal estimation of sea surface temperature from split window observations. Remote Sens. Environ., 112 , 24692484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., Harris A. R. , Maturi E. , Embury O. , MacCallum S. N. , Mittaz J. , and Old C. P. , 2009a: Sea surface temperature estimation from the Geostationary Operational Environmental Satellite-12 (GOES-12). J. Atmos. Oceanic Technol., 26 , 570581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., Le Borgne P. , Roquet H. , and Marsouin A. , 2009b: Sea surface temperature from a geostationary satellite by optimal estimation. Remote Sens. Environ., 113 , 445457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murtagh, F., Barreto D. , and Marcello J. , 2003: Decision boundaries using Bayes factors: The case of cloud masks. IEEE Trans. Geosci. Remote Sens., 41 , 29522958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellegrini, P. F., Bocci M. , Tommasini M. , and Innocenti M. , 2006: Monthly averages of sea surface temperature. Int. J. Remote Sens., 27 , 25192539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petrenko, B., Ignatov A. , Kihai Y. , and Heidinger A. , 2008: Clear-sky mask for the AVHRR Clear-Sky Processor for Oceans. Proc. Ocean Sciences Meeting, Orlando, FL, Amer. Geophys. Union. [Available online at http://www.star.nesdis.noaa.gov/smcd/emb/aerosol/ignatov/conf/2008-AGU-OSM-PetrenkoEtAl_ACSPO_CSM_Poster.pdf].

    • Search Google Scholar
    • Export Citation
  • Petrenko, B., Ignatov A. , Shabanov N. , Liang X. , and Heidinger A. , 2009: Cloud mask and quality control for SST within the Advanced Clear-Sky Processor for Oceans (ACSPO). Preprints, 16th Conf. on Satellite Meteorology and Oceanography, Phoenix, AZ, Amer. Meteor. Soc., JP1.12. [Available online at http://ams.confex.com/ams/89annual/techprogram/paper_143856.htm].

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Rayner N. A. , Smith T. M. , Stokes D. C. , and Wang W. , 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Smith T. M. , Liu C. , Chelton D. B. , Casey K. S. , and Schlax M. G. , 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20 , 54735496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., 1986: An automated scheme for the removal of cloud contaminations from AVHRR radiances over Western Europe. Int. J. Remote Sens., 7 , 867886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., and Kriebel K. T. , 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens., 9 , 123150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shabanov, N., and Coauthors, 2009: Prototyping SST retrievals from GOES-R ABI with MSG SEVIRI data. Preprints, Fifth Annual Symp. on Future Operational Environmental Satellite Systems—NPOESS and GOES-R, Phoenix, AZ, Amer. Meteor. Soc., JP2.15. [Available online at http://ams.confex.com/ams/89annual/techprogram/paper_143903.htm].

    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., Davis P. A. , and McClain E. P. , 1999: Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification algorithm for the Advanced Very High Resolution Radiometer. J. Atmos. Oceanic Technol., 16 , 656681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uddstrom, M. J., Gray W. R. , Murphy R. , Oien N. A. , and Murray T. , 1999: A Bayesian cloud mask for sea surface temperature retrieval. J. Atmos. Oceanic Technol., 16 , 117132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vermote, E., Tanre D. , Deuze J. L. , Herman M. , and Morcrette J. J. , 1997: Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens., 35 , 675686.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 424 203 5
PDF Downloads 266 147 5

Clear-Sky Mask for the Advanced Clear-Sky Processor for Oceans

View More View Less
  • 1 Center for Satellite Applications and Research, NOAA/National Environmental Satellite, Data, and Information Service, Camp Springs, and IMSG, Inc., Kensington, Maryland
  • | 2 Center for Satellite Applications and Research, NOAA/National Environmental Satellite, Data, and Information Service, Camp Springs, Maryland
  • | 3 Center for Satellite Applications and Research, NOAA/National Environmental Satellite, Data, and Information Service, Camp Springs, Maryland, and Dell Perot Systems, Fairfax, Virginia
  • | 4 NOAA/National Environmental Satellite, Data, and Information Service, Madison, Wisconsin
Restricted access

Abstract

The Advanced Clear Sky Processor for Oceans (ACSPO) generates clear-sky products, such as SST, clear-sky radiances, and aerosol, from Advanced Very High Resolution Radiometer (AVHRR)-like measurements. The ACSPO clear-sky mask (ACSM) identifies clear-sky pixels within the ACSPO products. This paper describes the ACSM structure and compares the performances of ACSM and its predecessor, Clouds from AVHRR Extended Algorithm (CLAVRx). ACSM essentially employs online clear-sky radiative transfer simulations enabled within ACSPO with the Community Radiative Transfer Model (CRTM) in conjunction with numerical weather prediction atmospheric [Global Forecast System (GFS)] and SST [Reynolds daily high-resolution blended SST (DSST)] fields. The baseline ACSM tests verify the accuracy of fitting observed brightness temperatures with CRTM, check retrieved SST for consistency with Reynolds SST, and identify ambient cloudiness at the boundaries of cloudy systems. Residual cloud effects are screened out with several tests, adopted from CLAVRx, and with the SST spatial uniformity test designed to minimize misclassification of sharp SST gradients as clouds. Cross-platform and temporal consistencies of retrieved SSTs are maintained by accounting for SST and brightness temperature biases, estimated within ACSPO online and independently from ACSM. The performance of ACSM is characterized in terms of statistics of deviations of retrieved SST from the DSST. ACSM increases the amount of “clear” pixels by 30% to 40% and improves statistics of retrieved SST compared with CLAVRx. ACSM is also shown to be capable of producing satisfactory statistics of SST anomalies if the reference SST field for the exact date of observations is unavailable at the time of processing.

Corresponding author address: Boris Petrenko, Room 601-4, 5200 Auth Rd., Camp Springs, MD 20746. Email: boris.petrenko@noaa.gov

Abstract

The Advanced Clear Sky Processor for Oceans (ACSPO) generates clear-sky products, such as SST, clear-sky radiances, and aerosol, from Advanced Very High Resolution Radiometer (AVHRR)-like measurements. The ACSPO clear-sky mask (ACSM) identifies clear-sky pixels within the ACSPO products. This paper describes the ACSM structure and compares the performances of ACSM and its predecessor, Clouds from AVHRR Extended Algorithm (CLAVRx). ACSM essentially employs online clear-sky radiative transfer simulations enabled within ACSPO with the Community Radiative Transfer Model (CRTM) in conjunction with numerical weather prediction atmospheric [Global Forecast System (GFS)] and SST [Reynolds daily high-resolution blended SST (DSST)] fields. The baseline ACSM tests verify the accuracy of fitting observed brightness temperatures with CRTM, check retrieved SST for consistency with Reynolds SST, and identify ambient cloudiness at the boundaries of cloudy systems. Residual cloud effects are screened out with several tests, adopted from CLAVRx, and with the SST spatial uniformity test designed to minimize misclassification of sharp SST gradients as clouds. Cross-platform and temporal consistencies of retrieved SSTs are maintained by accounting for SST and brightness temperature biases, estimated within ACSPO online and independently from ACSM. The performance of ACSM is characterized in terms of statistics of deviations of retrieved SST from the DSST. ACSM increases the amount of “clear” pixels by 30% to 40% and improves statistics of retrieved SST compared with CLAVRx. ACSM is also shown to be capable of producing satisfactory statistics of SST anomalies if the reference SST field for the exact date of observations is unavailable at the time of processing.

Corresponding author address: Boris Petrenko, Room 601-4, 5200 Auth Rd., Camp Springs, MD 20746. Email: boris.petrenko@noaa.gov

Save