Near-Surface Air Temperature Retrieval Derived from AMSU-A and Sea Surface Temperature Observations

Darren L. Jackson Cooperative Institute for Research in Environmental Sciences, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Darren L. Jackson in
Current site
Google Scholar
PubMed
Close
and
Gary A. Wick NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Gary A. Wick in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A 10-m air temperature (Ta) retrieval using Advanced Microwave Sounding Unit A (AMSU-A) and satellite-derived sea surface temperature (Ts) observations is presented. The multivariable linear regression retrieval uses AMSU-A brightness temperatures from the 52.8- and 53.6-GHz channels and satellite-derived daily sea surface temperatures to determine Ta. A regression error of 0.83°C using 841 matched satellite and ship observations demonstrates a high-quality fit of the satellite observations with in situ Ta. Validation of the retrieval using independent International Comprehensive Ocean–Atmosphere Dataset (ICOADS) ship and buoy observations results in a bias of −0.21°C and root-mean-square (RMS) differences of 1.55°C. A comparison with previous satellite-based Ta retrievals indicates less bias and significantly smaller RMS differences for the new retrieval. Regional biases inherent to previous retrievals are reduced in several oceanic regions using the new Ta retrieval. Satellite-derived Ts–Ta data were found to agree well with ICOADS buoy data and were significantly improved from previous retrievals.

Corresponding author address: Darren L. Jackson, Cooperative Institute for Research in Environmental Sciences, University of Colorado/NOAA/Earth System Research Laboratory, 325 Broadway R/PSD2, Boulder, CO 80305–3337. Email: darren.l.jackson@noaa.gov

Abstract

A 10-m air temperature (Ta) retrieval using Advanced Microwave Sounding Unit A (AMSU-A) and satellite-derived sea surface temperature (Ts) observations is presented. The multivariable linear regression retrieval uses AMSU-A brightness temperatures from the 52.8- and 53.6-GHz channels and satellite-derived daily sea surface temperatures to determine Ta. A regression error of 0.83°C using 841 matched satellite and ship observations demonstrates a high-quality fit of the satellite observations with in situ Ta. Validation of the retrieval using independent International Comprehensive Ocean–Atmosphere Dataset (ICOADS) ship and buoy observations results in a bias of −0.21°C and root-mean-square (RMS) differences of 1.55°C. A comparison with previous satellite-based Ta retrievals indicates less bias and significantly smaller RMS differences for the new retrieval. Regional biases inherent to previous retrievals are reduced in several oceanic regions using the new Ta retrieval. Satellite-derived Ts–Ta data were found to agree well with ICOADS buoy data and were significantly improved from previous retrievals.

Corresponding author address: Darren L. Jackson, Cooperative Institute for Research in Environmental Sciences, University of Colorado/NOAA/Earth System Research Laboratory, 325 Broadway R/PSD2, Boulder, CO 80305–3337. Email: darren.l.jackson@noaa.gov

Save
  • Bentamy, A., Katsaros K. B. , Mestas-Nuñoz A. M. , Drennan W. M. , Forde E. B. , and Roquet H. , 2003: Satellite estimates of wind speed and latent heat flux over the global oceans. J. Climate, 16 , 637656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and Curry J. A. , 1996: Determination of surface turbulent fluxes for the Tropical Ocean–Global Atmospheric Coupled Ocean–Atmosphere Response Experiment: Comparison of satellite retrievals and in situ measurements. J. Geophys. Res., 101 , 2851528528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2004: SEAFLUX. Bull. Amer. Meteor. Soc., 85 , 409424.

  • DaSilva, A. M., Young C. C. , and Levitus S. , 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Hare J. E. , Grachev A. A. , and Edson J. B. , 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., Wick G. A. , and Bates J. J. , 2006: Near-surface retrieval of air temperature and specific humidity using multisensor microwave satellite observations. J. Geophys. Res., 111 , D10306. doi:10.1029/2005JD006431.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., Wick G. A. , and Robinson F. R. , 2009: Improved multisensor approach to satellite-retrieved near-surface specific humidity observations. J. Geophys. Res., 114 , D16303. doi:10.1029/2008JD011341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., Peterson P. , and Gautier C. , 1999: A new method for deriving ocean surface specific humidity and air temperature: An artificial neural network approach. J. Appl. Meteor., 38 , 12291245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jourdan, D., and Gautier C. , 1995: Comparison between global latent heat flux computed from multisensor (SSM/I and AVHRR) and from in situ data. J. Atmos. Oceanic Technol., 12 , 4672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, E. C., Tiddy R. J. , and Taylor P. K. , 1993: Correction of marine air temperature observations for solar radiation effects. J. Atmos. Oceanic Technol., 10 , 900906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konda, M., Imasato N. , and Shibata A. , 1996: A new method to determine near-sea surface air temperature by using satellite data. J. Geophys. Res., 101 , 1434914360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., 1988: Moisture and latent heat flux variabilities in the tropical Pacific derived from satellite data. J. Geophys. Res., 93 , 67496760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Smith T. M. , Liu C. , Chelton D. B. , Casey K. S. , and Schlax M. G. , 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20 , 54735496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., Clayson C. A. , Robertson F. R. , and Jackson D. L. , 2010: Predicting near-surface characteristics from SSM/I using neural networks with a first guess approach. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., Woodruff S. D. , Reynolds R. W. , Lubker S. J. , and Lott N. , 2005: ICOADS Release 2.1 data and products. Int. J. Climatol., 25 , 823842.

  • Zeng, L., Shi P. , Liu W. T. , and Wang D. , 2009: Evaluation of a satellite-derived latent heat flux product in the South China Sea: A comparison with moored buoy data and various products. Atmos. Res., 94 , 91105.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1348 1023 288
PDF Downloads 225 56 6