• Adam, M., Venable D. , and Connell R. , 2007: Performance of the Howard University Raman lidar during 2006 WAVES campaign. J. Optoelec. Adv. Mater., 9 , 35223528.

    • Search Google Scholar
    • Export Citation
  • Adam, M., and Coauthors, 2010: Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign. J. Atmos. Oceanic Technol., 27 , 4260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., Riebesell M. , and Weitkamp C. , 1990: Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett., 15 , 746748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., Wandinger U. , Riebesell M. , Weitkamp C. , and Michaelis W. , 1992: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic–backscatter lidar. Appl. Opt., 31 , 71137131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battan, L. J., and Reitan C. J. , 1957: Artificial Stimulation of Rain. Pergamon Press, 184 pp.

  • Behrendt, A., and Nakamura T. , 2002: Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature. Opt. Express, 10 , 805817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrendt, A., and Coauthors, 2007: Intercomparison of water vapor data measured with lidar during IHOP_2002. Part I: Airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes. J. Atmos. Oceanic Technol., 24 , 321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bendsten, J., and Rasmussen F. , 2000: High-resolution incoherent Fourier transform Raman spectrum of the fundamental band of 14N2. J. Raman Spectrosc., 31 , 433438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, R., and Meijgaard E. , 2009: What are the demands on an observational program to detect trends in upper tropospheric water vapor anticipated in the 21st century? Geophys. Res. Lett., 36 , L19806. doi:10.1029/2009GL040044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukin, O. A., Kopvillem U. Kh , Stol-yarchuk S. Yu , and Tyapkin V. A. , 1983: Investigation of Raman spectra of atmospheric gases. Zh. Prikkadnoi Spektrosk., 38 , 776779.

    • Search Google Scholar
    • Export Citation
  • Burris, J., Heaps W. , Gary B. , Hoegy W. , Lait L. , McGee T. , Gross M. , and Singh U. , 1998: Lidar temperature measurements during the Tropical Ozone Transport Experiment (TOTE)/Vortex OzoneTransport Experiment (VOTE) mission. J. Geophys. Res., 103 , (D3). 35053510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burris, J., and Coauthors, 2002: Validation of temperature measurements from the airborne Raman ozone temperature and aerosol lidar during SOLVE. J. Geophys. Res., 107 , 8286. doi:10.1029/2001JD001028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demoz, B., and Coauthors, 2006: The dryline on 22 May 2002 during IHOP-2002: Convective-scale measurements at the profiling site. Mon. Wea. Rev., 134 , 294310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., Marchese R. , Whiteman D. N. , and Demoz B. B. , 2004: Rotational Raman lidar measurements of atmospheric temperature in the UV. Geophys. Res. Lett., 31 , L01106. doi:10.1029/2003GL018342.

    • Search Google Scholar
    • Export Citation
  • Esselborn, M., Wirth M. , Fix A. , Tesche M. , and Ehret G. , 2008: Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients. Appl. Opt., 47 , 346358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2007: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112 , D16303. doi:10.1029/2006JD008332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors, 1999: LASE measurements of water vapor, aerosols, and clouds during CAMEX-3. Proc. Optical Remote Sensing of the Atmosphere, Santa Barbara, CA, Optical Society of America, RWC16.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors, 2006: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains. J. Geophys. Res., 111 , D05S08. doi:10.1029/2005JD005836.

    • Search Google Scholar
    • Export Citation
  • Hair, J. W., and Coauthors, 2008: Airborne high spectral resolution lidar for profiling aerosol optical properties. Appl. Opt., 47 , 67346753.

  • Harms, J., Lahmann W. , and Weitkamp C. , 1978: Geometrical compression of lidar return signals. Appl. Opt., 17 , 11311135.

  • Heaps, W. S., and Burris J. , 1996: Airborne Raman lidar. Appl. Opt., 35 , 71287135.

  • Hobbs, P. V., Politovich M. K. , and Radke L. F. , 1980: The structures of summer convective clouds in eastern Montana. I: Natural clouds. J. Appl. Meteor., 19 , 645663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inaba, H., and Kobayashi T. , 1972: Laser-Raman radar. Opto-Electron., 4 , 101123.

  • Kamineni, R., Krishnamurti T. N. , Ferrare R. A. , Ismail S. , and Browell E. V. , 2003: Impact of high resolution water vapor cross-sectional data on hurricane forecasting. Geophy. Res. Lett., 30 , 1234. doi:10.1029/2002GL016741.

    • Search Google Scholar
    • Export Citation
  • Kiemle, C., Wirth M. , Schäfler A. , Fix A. , Rahm S. , Dörnbrack A. , and Ehret G. , 2007: Water vapour and wind profiles from collocated airborne lidars during COPS 2007. Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III, U. N. Singh and G. Pappalardo, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6750), 67500P, doi:10.1117/12.737931.

    • Search Google Scholar
    • Export Citation
  • Leblanc, T., and McDermid I. S. , 2008: Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements. Appl. Opt., 47 , 55925603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melfi, S. H., Whiteman D. N. , and Ferrare R. A. , 1989: Observation of atmospheric fronts using Raman lidar moisture measurements. J. Appl. Meteor., 28 , 789806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melfi, S. H., Evans K. D. , Li J. , Whiteman D. , Ferrare R. , and Schwemmer G. , 1997: Observation of Raman scattering by cloud droplets in the atmosphere. Appl. Opt., 36 , 35513559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oman, L., Waugh D. , Pawson S. , Stolarski R. , and Nielsen J. , 2008: Understanding the changes of stratospheric water vapor in coupled chemistry–climate model simulations. J. Atmos. Sci., 65 , 32783291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poberaj, G., Fix A. , Assion A. , Wirth M. , Kiemle C. , and Ehret G. , 2002: Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: System description and assessment of accuracy. Appl. Phys., 75B , 165172.

    • Search Google Scholar
    • Export Citation
  • Reichardt, J., Reichardt S. , Behrendt A. , and McGee T. J. , 2002: Correlations among the optical properties of cirrus-cloud particles: Implications for spaceborne remote sensing. Geophys. Res. Lett., 29 , 10291032.

    • Search Google Scholar
    • Export Citation
  • Rizi, V., Iarlori M. , Rocci G. , and Visconti G. , 2004: Raman lidar observations of cloud liquid water. Appl. Opt., 43 , 64406453.

  • Russo, F., 2007: An investigation of Raman lidar aerosol measurements and their application to the study of the aerosol indirect effect. Ph.D. dissertation, University of Maryland, Baltimore County, 209 pp.

  • Sherlock, V., Garnier A. , Hauchecorne A. , and Keckhut P. , 1999: Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor. Appl. Opt., 38 , 58385850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slusher, R. B., and Derr V. E. , 1975: Temperature dependence and cross sections of some Stokes and anti-Stokes Raman lines in Ice Ih. Appl. Opt., 14 , 21162120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., Jackson D. L. , Ramaswamy V. , Schwarzkopf M. D. , and Huang X. , 2005: The radiative signature of upper tropospheric moistening. Science, 310 , 841844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veselovskii, I. A., Cha H. K. , Kim D. H. , Choi S. C. , and Lee J. M. , 2000: Raman lidar for the study of liquid water and water vapor in the troposphere. Appl. Phys., 71B , 113117.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., David D. E. , and Smith K. , 2007a: Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations. J. Geophys. Res., 112 , D08305. doi:10.1029/2006JD007224.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., and Coauthors, 2007b: Validation of Aura Microwave Limb Sounder water vapor by balloonborne cryogenic frost point hygrometer measurements. J. Geophys. Res., 112 , D24S37. doi:10.1029/2007JD008698.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., Yushkov V. , Khaykin S. , Korshunov L. , Kyrö E. , and Kivi R. , 2007c: Intercomparisons of sratospheric water vapor sensors: FLASH-B and NOAA/CMDL frost-point hygrometer. J. Atmos. Oceanic Technol., 24 , 941952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., Whiteman D. N. , Demoz B. B. , and Veselovskii I. , 2004: A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar. Geophys. Res. Lett., 31 , L15101. doi:10.1029/2004GL020004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, A., 1979: Raman Spectroscopy of Gases and Liquids. Topics in Current Physics, Vol. 11, Springer-Verlag, 318 pp.

  • Whiteman, D. N., and Melfi S. H. , 1999: Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar. J. Geophys. Res., 104 , 3141131419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Melfi S. H. , and Ferrare R. A. , 1992: Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere. Appl. Opt., 31 , 30683082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2001a: Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie. J. Geophys. Res., 106 , 52115225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Schwemmer G. , Berkoff T. , Plotkin H. , Ramos-Izquierdo L. , and Pappalardo G. , 2001b: Performance modeling of an airborne Raman water vapor lidar. Appl. Opt., 40 , 375390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Demoz B. , and Wang Z. , 2004: Subtropical cirrus cloud extinction to backscatter ratios measured by Raman lidar during CAMEX-3. Geophys. Res. Lett., 31 , L12105. doi:10.1029/2004GL020003.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2006a: Raman water vapor lidar measurements during the International H2O Project. Part I: Instrumentation and analysis techniques. J. Atmos. Oceanic Technol., 23 , 157169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2006b: Raman water vapor lidar measurements during the International H2O Project. Part II: Instrument comparisons and case studies. J. Atmos. Oceanic Technol., 23 , 170183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Veselovskii I. , Cadirola M. , Rush K. , Comer J. , Potter J. , and Tola R. , 2007: Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar. J. Atmos. Oceanic Technol., 24 , 13771388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., Bauer H-S. , Grzeschik M. , Behrendt A. , Vandenberghe F. , Browell E. V. , Ismail S. , and Ferrare R. A. , 2006: Four-dimensional variational assimilation of water vapor differential absorption lidar data: The first case study within IHOP_2002. Mon. Wea. Rev., 134 , 209230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., Zhang S. , and Weaver S. J. , 2006: Low-level jets over the mid-Atlantic states: Warm season climatology and a case study. J. Appl. Meteor. Climatol., 45 , 194209.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 293 169 4
PDF Downloads 279 171 4

Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

View More View Less
  • 1 NASA GSFC, Greenbelt, Maryland
  • | 2 University of Maryland, College Park, College Park, Maryland
  • | 3 Welch Mechanical Designs, Belcamp, Maryland
  • | 4 Ecotronics, LLC, Clarksburg, Maryland
  • | 5 SGT, Lanham, Maryland
  • | 6 CNR, Potenza, Italy
  • | 7 European Commission–JRC, Ispra, Italy
  • | 8 Howard University, Washington, D.C
  • | 9 University of Maryland, Baltimore County, Baltimore, Maryland
  • | 10 Universidad Mayor de San Andres, La Paz, Bolivia
  • | 11 Licel, Berlin, Germany
  • | 12 Jet Propulsion Laboratory, California Institute of Technology, Table Mountain Facility, Table Mountain, California
  • | 13 Lindenberg Observatory, Lindenberg, Germany
Restricted access

Abstract

A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July–August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment—Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for ground-based use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory’s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During the MOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL–ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE-II measurements, along with numerical simulation, were used to determine that the likely reason for the suboptimal airborne aerosol extinction performance during the WAVES_2007 campaign was a misaligned interference filter. With full laser power and a properly tuned interference filter, RASL is shown to be capable of measuring the main water vapor and aerosol parameters with temporal resolutions of between 2 and 45 s and spatial resolutions ranging from 30 to 330 m from a flight altitude of 8 km with precision of generally less than 10%, providing performance that is competitive with some airborne Differential Absorption Lidar (DIAL) water vapor and High Spectral Resolution Lidar (HSRL) aerosol instruments. The use of diode-pumped laser technology would improve the performance of an airborne Raman lidar and permit additional instrumentation to be carried on board a small research aircraft. The combined airborne and ground-based measurements presented here demonstrate a level of versatility in Raman lidar that may be impossible to duplicate with any other single lidar technique.

Corresponding author address: David N. Whiteman, NASA/GSFC, Code 613.1, Bldg. 33, Rm. D404, Greenbelt, MD 20771. Email: david.n.whiteman@nasa.gov

Abstract

A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July–August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment—Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for ground-based use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory’s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During the MOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL–ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE-II measurements, along with numerical simulation, were used to determine that the likely reason for the suboptimal airborne aerosol extinction performance during the WAVES_2007 campaign was a misaligned interference filter. With full laser power and a properly tuned interference filter, RASL is shown to be capable of measuring the main water vapor and aerosol parameters with temporal resolutions of between 2 and 45 s and spatial resolutions ranging from 30 to 330 m from a flight altitude of 8 km with precision of generally less than 10%, providing performance that is competitive with some airborne Differential Absorption Lidar (DIAL) water vapor and High Spectral Resolution Lidar (HSRL) aerosol instruments. The use of diode-pumped laser technology would improve the performance of an airborne Raman lidar and permit additional instrumentation to be carried on board a small research aircraft. The combined airborne and ground-based measurements presented here demonstrate a level of versatility in Raman lidar that may be impossible to duplicate with any other single lidar technique.

Corresponding author address: David N. Whiteman, NASA/GSFC, Code 613.1, Bldg. 33, Rm. D404, Greenbelt, MD 20771. Email: david.n.whiteman@nasa.gov

Save