• Beasley, W. H., and Edgar B. C. , 2004: Early coincident satellite optical and ground-based RF observation of lightning. Geophys. Res. Lett., 31 , L07107. doi:10.1029/2003GL018991.

    • Search Google Scholar
    • Export Citation
  • Bey, I., and Coauthors, 2001: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res., 106 , 2307323095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., Cummins K. L. , Kehoe K. E. , and Krider E. P. , 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112 , D05208. doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., and Coauthors, 2000: The Optical Transient Detector (OTD): Instrument characteristics and cross-sensor validation. J. Atmos. Oceanic Technol., 17 , 441458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., Cummins K. L. , Christian H. J. , and Goodman S. J. , 2001: Combined satellite- and surface-based estimation of the intracloud-cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129 , 108122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and Rutledge S. A. , 2003: Characteristics of cloud-to-ground lightning in severe and nonsevere storms over the central United States from 1989–1998. J. Geophys. Res., 108 , 4483. doi:10.1029/2002JD002951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., Rutledge S. A. , and Petersen W. A. , 2003: The relationship between severe storm reports and cloud-to-ground lightning polarity in the contiguous United States from 1989 to 1998. Mon. Wea. Rev., 131 , 12111228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Goodman S. J. , 1987: Optical observations of lightning from a high-altitude airplane. J. Atmos. Oceanic Technol., 4 , 701711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., Frost R. L. , Gillaspy P. H. , Goodman S. J. , Vaughan O. H. Jr., Brook M. , Vonnegut B. , and Orville R. E. , 1983: Observations of optical lightning emissions from above thunderstorms using U-2 aircraft. Bull. Amer. Meteor. Soc., 64 , 120123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108 , 4005. doi:10.1029/2002JD002347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and Murphy M. J. , 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51 , 499518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., Bardo E. A. , Hiscox W. L. , Pyle R. B. , and Pifer A. E. , 1995: NLDN’95: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. Extended abstracts, Int. Aerospace and Ground Conf. on Lightning and Static Electricity, Williamsburg, VA, National Interagency Coordination Group, 72-1–72-15.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., Murphy M. J. , Bardo E. A. , Hiscox W. L. , Pyle R. B. , and Pifer A. E. , 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 , 90359044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, A. B., and Marshak A. , 2002: Space-time characteristics of light transmitted through dense clouds: A Green’s function analysis. J. Atmos. Sci., 59 , 27132727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., Suszcynsky D. M. , and Light T. E. L. , 2002: FORTE observations of optical emissions from lightning: Optical properties and discrimination capability. J. Geophys. Res., 107 , 4579. doi:10.1029/2002JD002434.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., Christian H. J. , and Rust W. D. , 1988: A comparison of the optical pulse characteristics of intracloud and cloud-to-ground lightning as observed above clouds. J. Appl. Meteor., 27 , 13691381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffines, G. R., and Orville R. E. , 1999: Lightning ground flash density and thunderstorm duration in the continental United States: 1989–96. J. Appl. Meteor., 38 , 10131019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntrieser, H., Schlager H. , Feigl C. , and Holler H. , 1998: Transport and production of NOx in electrified thunderstorms: Survey of previous studies and new observations at midlatitudes. J. Geophys. Res., 103 , 2824728264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkland, M. W., Suszcynsky D. M. , Guillen J. L. L. , and Green J. L. , 2001: Optical observations of terrestrial lightning by the FORTE satellite photodiode detector. J. Geophys. Res., 106 , (D24). 3349933509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., 2007: OTD observations of continental US ground and cloud flashes. Proc. 13th Int. Conf. on Atmospheric Electricity, Beijing China, International Commission on Atmospheric Electricity, 823–826. [Available online at http://hdl.handle.net/2060/20070038268].

    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., Solakiewicz R. J. , Phanord D. D. , and Blakeslee R. J. , 1994: Diffusion model for lightning radiative transfer. J. Geophys. Res., 99 , 1436114371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., Khan M. N. , Biazar A. P. , Newchurch M. , and McNider R. T. , 2009: A NASA model for improving the lightning NOx emission inventory for CMAQ. Preprints, Fourth Conf. on the Meteorological Applications of Lightning Data and the 11th Conf. on Atmospheric Chemistry, Phoenix, AZ, Amer. Meteor. Soc., J8.2. [Available online at http://ams.confex.com/ams/pdfpapers/147334.pdf].

    • Search Google Scholar
    • Export Citation
  • Lee, D. S., and Coauthors, 1997: Estimations of global NOx emissions and their uncertainties. Atmos. Environ., 31 , 17351749.

  • Light, T. E., and Jacobson A. R. , 2002: Characteristics of impulsive VHF lightning signals observed by the FORTE satellite. J. Geophys. Res., 107 , 4756. doi:10.1029/2001JD001585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Light, T. E., Suszcynsky D. M. , and Jacobson A. R. , 2001a: Coincident radio frequency and optical emissions from lightning, observed with the FORTE satellite. J. Geophys. Res., 106 , (D22). 2822328231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Light, T. E., Suszcynsky D. M. , Kirkland M. W. , and Jacobson A. R. , 2001b: Simulations of lightning optical waveforms as seen through clouds by satellites. J. Geophys. Res., 106 , (D15). 1710317114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mach, D. M., Christian H. J. , Blakeslee R. J. , Boccippio D. J. , Goodman S. J. , and Boeck W. L. , 2007: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res., 112 , D09210. doi:10.1029/2006JD007787.

    • Search Google Scholar
    • Export Citation
  • Martin, R. V., Sauvage B. , Folkins I. , Sioris C. E. , Boone C. , Bernath P. , and Ziemke J. , 2007: Space-based constraints on the production of nitric oxide by lightning. J. Geophys. Res., 112 , D09309. doi:10.1029/2006JD007831.

    • Search Google Scholar
    • Export Citation
  • Noble, C. M. M., Beasley W. H. , Postawko S. E. , and Light T. E. L. , 2004: Coincident observations of lightning by the FORTE photodiode detector, the New Mexico Tech Lightning Mapping Array and the NLDN during STEPS. Geophys. Res. Lett., 31 , L07106. doi:10.1029/2003GL018989.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite, and reanalysis data. J. Climate, 19 , 153192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suszcynsky, D. M., Kirkland M. W. , Jacobson A. R. , Franz R. C. , Knox S. O. , Guillen J. L. L. , and Green J. L. , 2000: FORTE observations of simultaneous VHF and optical emissions from lightning: Basic phenomenology. J. Geophys. Res., 105 , (D2). 21912201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suszcynsky, D. M., Light T. E. , Davis S. , Green J. L. , Guillen J. L. L. , and Myre W. , 2001: Coordinated observations of optical lightning from space using the FORTE photodiode detector and CCD imager. J. Geophys. Res., 106 , (D16). 1789717906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., Krehbiel P. R. , Rison W. , Hamlin T. , Boccippio D. J. , Goodman S. J. , and Christian H. J. , 2000: Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma. Geophys. Res. Lett., 27 , 17031706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomason, L., and Krider E. , 1982: The effects of cloud on the light produced by lightning. J. Atmos. Sci., 39 , 20512065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zajac, B. A., and Rutledge S. A. , 2001: Cloud-to-ground lightning activity in the contiguous United States from 1995 to 1999. Mon. Wea. Rev., 129 , 9991019.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 220 104 4
PDF Downloads 141 76 6

Optical Characteristics of OTD Flashes and the Implications for Flash-Type Discrimination

View More View Less
  • 1 NASA Marshall Space Flight Center, Huntsville, Alabama
Restricted access

Abstract

Flashes detected by the Optical Transient Detector (OTD) that occur over the continental United States (CONUS) are intercompared with data from the National Lightning Detection Network (NLDN) in order to partition the OTD flashes into ground and cloud flashes. The entire 5-yr OTD dataset for CONUS is analyzed. The statistical distributions of a variety of optical characteristics are examined, including five flash-level attributes (radiance, area, duration, number of optical groups, and number of optical events), and two group-level attributes [the maximum number of events in a group (MNEG), and a closely related parameter, the maximum group area (MGA)]. On average, there were 5.6 optical groups per return stroke in a ground flash, which is in part due to the likelihood that OTD detects interstroke K changes. It was found that return strokes within ground flashes typically produce large optical groups; hence, the MNEG and MGA parameters serve as useful “return-stroke detectors.” The results of this study provide insight on how to construct an algorithm for retrieving the fraction of ground flashes in a set of flashes observed from a satellite lightning imager. Specifically, even though it is shown that the statistical distributions of the optical characteristics for ground and cloud flashes overlap substantially, the mean values of these distributions differ. Hence, a retrieval method that is based on an analysis of the distribution of the means, and that employs the central limit theorem of statistics, is recommended. As the sample size used to compute the means is increased, the overlap in the distributions of the means for ground and cloud flashes is diminished, making ground flash fraction retrieval feasible. Of the seven optical characteristics examined here, the mean MNEG and mean MGA parameters are suggested as being the most useful for discriminating between ground and cloud flashes in the context of this “central limit theorem” approach.

Corresponding author address: Dr. William Koshak, VP61, Earth Science Office, 320 Sparkman Drive, Robert Cramer Research Hall, NASA Marshall Space Flight Center, Huntsville, AL 35805. Email: william.koshak@nasa.gov

Abstract

Flashes detected by the Optical Transient Detector (OTD) that occur over the continental United States (CONUS) are intercompared with data from the National Lightning Detection Network (NLDN) in order to partition the OTD flashes into ground and cloud flashes. The entire 5-yr OTD dataset for CONUS is analyzed. The statistical distributions of a variety of optical characteristics are examined, including five flash-level attributes (radiance, area, duration, number of optical groups, and number of optical events), and two group-level attributes [the maximum number of events in a group (MNEG), and a closely related parameter, the maximum group area (MGA)]. On average, there were 5.6 optical groups per return stroke in a ground flash, which is in part due to the likelihood that OTD detects interstroke K changes. It was found that return strokes within ground flashes typically produce large optical groups; hence, the MNEG and MGA parameters serve as useful “return-stroke detectors.” The results of this study provide insight on how to construct an algorithm for retrieving the fraction of ground flashes in a set of flashes observed from a satellite lightning imager. Specifically, even though it is shown that the statistical distributions of the optical characteristics for ground and cloud flashes overlap substantially, the mean values of these distributions differ. Hence, a retrieval method that is based on an analysis of the distribution of the means, and that employs the central limit theorem of statistics, is recommended. As the sample size used to compute the means is increased, the overlap in the distributions of the means for ground and cloud flashes is diminished, making ground flash fraction retrieval feasible. Of the seven optical characteristics examined here, the mean MNEG and mean MGA parameters are suggested as being the most useful for discriminating between ground and cloud flashes in the context of this “central limit theorem” approach.

Corresponding author address: Dr. William Koshak, VP61, Earth Science Office, 320 Sparkman Drive, Robert Cramer Research Hall, NASA Marshall Space Flight Center, Huntsville, AL 35805. Email: william.koshak@nasa.gov

Save