• Andrews, A. E., Boering K. A. , Daube B. C. , Wofsy S. C. , Hintsa E. J. , Weinstock E. M. , and Bui T. P. , 1999: Empirical age spectra for the lower tropical stratosphere from in situ observations of CO2: Implications for stratospheric transport. J. Geophys. Res., 104 , 2658126595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, A. E., and Coauthors, 2001: Mean ages of stratospheric air derived from in situ observations of CO2, CH4, and N2O. J. Geophys. Res., 106 , 3229532314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aris, R., 1956: On the dispersion of a solute in a fluid flowing through a tube. Proc. Roy. Soc. London, 235A , 6777.

  • Baker, D. F., and Coauthors, 2006: TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003. Global Biogeochem. Cycles, 20 , GB1002. doi:10.1029/2004GB002439.

    • Search Google Scholar
    • Export Citation
  • Bakwin, P. S., Tans P. P. , Stephens B. B. , Wofsy S. C. , Gerbig C. , and Grainger A. , 2003: Strategies for measurement of atmospheric column means of carbon dioxide from aircraft using discrete sampling. J. Geophys. Res., 108 , 4514. doi:10.1029/2002JD003306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and Coauthors, 2010: High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique. Atmos. Meas. Tech., 3 , 375386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, W. W., Wofsy S. C. , Harriss R. C. , Lin J. C. , Gerbig C. , and Sachse G. W. , 2002: Net fluxes of CO2 in Amazonia derived from aircraft observations. J. Geophys. Res., 107 , 4614. doi:10.1029/2001JD001295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conway, T. J., Tans P. P. , Waterman L. S. , Thoning K. W. , Kitzis D. R. , Masarie K. A. , and Zhang N. , 1994: Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network. J. Geophys. Res., 99 , 2283122855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crevoisier, C., Gloor M. , Gloaguen E. , Horowitz L. W. , Sarmiento J. L. , Sweeney C. , and Tans P. P. , 2006: A direct carbon budgeting approach to infer carbon sources and sinks: Design and synthetic application to complement the NACP observation network. Tellus, 58B , 366375.

    • Search Google Scholar
    • Export Citation
  • Crevoisier, C., Sweeney C. , Gloor M. , Sarmiento J. , and Tans P. P. , 2010: A new insight on regional US carbon sinks from three-dimensional atmospheric CO2 sampling. Proc. Natl. Acad. Sci. USA, in press.

    • Search Google Scholar
    • Export Citation
  • Crosson, E. R., 2008: A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl. Phys. B, 92 , 403408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daube, B. C., Boering K. A. , Andrews A. E. , and Wofsy S. C. , 2002: A high-precision fast-response airborne CO2 analyzer for in situ sampling from the surface to the middle stratosphere. J. Atmos. Oceanic Technol., 19 , 15321543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dlugokencky, E. J., Steele L. P. , Lang P. M. , and Masarie K. A. , 1994: The growth rate and distribution of atmospheric methane. J. Geophys. Res., 99 , 1702117043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerbig, C., Lin J. C. , Wofsy S. C. , Daube B. C. , Andrews A. E. , Stephens B. B. , Bakwin P. S. , and Grainger C. A. , 2003: Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms. J. Geophys. Res., 108 , 4756. doi:10.1029/2002JD003018.

    • Search Google Scholar
    • Export Citation
  • Gurney, K. R., and Coauthors, 2002: Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415 , 626630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurney, K. R., and Coauthors, 2004: Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochem. Cycles, 18 , GB1010. doi:10.1029/2003GB002111.

    • Search Google Scholar
    • Export Citation
  • Isaac, P. R., McAneney J. , Leuning R. , and Hacker J. M. , 2004: Comparison of aircraft and ground-based flux measurements during OASIS95. Bound.-Layer Meteor., 110 , 3967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kort, E. A., and Coauthors, 2008: Emissions of CH4 and N2O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations. Geophys. Res. Lett., 35 , L18808. doi:10.1029/2008GL034031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machida, T., and Coauthors, 2008: Worldwide measurements of atmospheric CO2 and other trace gas species using commercial airlines. J. Atmos. Oceanic Technol., 25 , 17441754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martins, D. K., Sweeney C. , Stirm B. H. , and Shepson P. B. , 2009: Regional surface flux of CO2 inferred from changes in the advected CO2 column density. Agric. For. Meteor., 149 , 16741685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massman, W. J., 1998: A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmos. Environ., 32 , 11111127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mays, K. L., Shepson P. B. , Stirm B. H. , Karion A. , Sweeney C. , and Gurney K. R. , 2009: Aircraft-based measurements of the carbon footprint of Indianapolis. Environ. Sci. Technol., 43 , 78167823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, J. B., Gatti L. V. , d’Amelio M. T. S. , Crotwell A. M. , Dlugokencky E. J. , Bakwin P. , Artaxo P. , and Tans P. P. , 2007: Airborne measurements indicate large methane emissions from the eastern Amazon basin. Geophys. Res. Lett., 34 , L10809. doi:10.1029/2006GL029213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, W., and Coauthors, 2005: An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res., 110 , D24304. doi:10.1029/2005JD006157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, W., and Coauthors, 2007: An atmospheric perspective of carbon-dioxide exchange across North America: CarbonTracker. Proc. Natl. Acad. Sci. USA, 104 , 1892518930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, A. K., Warneke T. , Lawrence M. G. , Notholt J. , and Schrems O. , 2008: First ground-based FTIR observations of the seasonal variation of carbon monoxide in the tropics. Geophys. Res. Lett., 35 , L03813. doi:10.1029/2007GL031393.

    • Search Google Scholar
    • Export Citation
  • Sawa, Y., and Coauthors, 2004: Aircraft observation of CO2, CO, O3 and H2 over the North Pacific during the PACE-7 campaign. Tellus, 56B , 220.

    • Search Google Scholar
    • Export Citation
  • Stephens, B. B., and Coauthors, 2007: Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316 , 17321735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tans, P. P., 2009: System and method for providing vertical profile measurements of atmospheric gases. U.S. Patent 7,597,014, filed 15 August 2006, and issued 6 October 2009.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1953: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. London, 219A , 186203.

  • Warneke, T., de Beek R. , Buchwitz M. , Notholt J. , Schulz A. , Velazco V. , and Schrems O. , 2005: Shipborne solar absorption measurements of CO2, CH4, N2O and CO and comparison with SCIAMACHY WFM-DOAS retrievals. Atmos. Chem. Phys., 5 , 20292034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washenfelder, R. A., and Coauthors, 2006: Carbon dioxide column abundances at the Wisconsin Tall Tower site. J. Geophys. Res., 111 , D22305. doi:10.1029/2006JD007154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z., Washenfelder R. A. , Keppel-Aleks G. , Krakauer N. Y. , Randerson J. T. , Tans P. P. , Sweeney C. , and Wennberg P. O. , 2007: New constraints on Northern Hemisphere growing season net flux. Geophys. Res. Lett., 34 , L12807. doi:10.1029/2007GL029742.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1358 739 34
PDF Downloads 1021 510 31

AirCore: An Innovative Atmospheric Sampling System

View More View Less
  • 1 CIRES, University of Colorado, Boulder, and NOAA/ESRL, Boulder, Colorado
  • | 2 NOAA/ESRL, Boulder, Colorado
  • | 3 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
Restricted access

Abstract

This work describes the AirCore, a simple and innovative atmospheric sampling system. The AirCore used in this study is a 150-m-long stainless steel tube, open at one end and closed at the other, that relies on positive changes in ambient pressure for passive sampling of the atmosphere. The AirCore evacuates while ascending to a high altitude and collects a sample of the ambient air as it descends. It is sealed upon recovery and measured with a continuous analyzer for trace gas mole fraction. The AirCore tubing can be shaped into a variety of configurations to accommodate any sampling platform; for the testing done in this work it was shaped into a 0.75-m-diameter coil. Measurements of CO2 and CH4 mole fractions in laboratory tests indicate a repeatability and lack of bias to better than 0.07 ppm (one sigma) for CO2 and 0.4 ppb for CH4 under various conditions. Comparisons of AirCore data with flask data from aircraft flights indicate a standard deviation of differences of 0.3 ppm and 5 ppb for CO2 and CH4, respectively, with no apparent bias. Accounting for longitudinal mixing, the expected measurement resolution for CO2 is 110 m at sea level, 260 m at 8000 m, and 1500 m at 20 000 m ASL after 3 h of storage, decreasing to 170, 390, and 2300 m, after 12 h. Validation tests confirm that the AirCore is a robust sampling device for many species on a variety of platforms, including balloons, unmanned aerial vehicles (UAVs), and aircraft.

Corresponding author address: Anna Karion, 325 Broadway, NOAA/ESRL, Boulder, CO 80305. Email: anna.karion@noaa.gov

Abstract

This work describes the AirCore, a simple and innovative atmospheric sampling system. The AirCore used in this study is a 150-m-long stainless steel tube, open at one end and closed at the other, that relies on positive changes in ambient pressure for passive sampling of the atmosphere. The AirCore evacuates while ascending to a high altitude and collects a sample of the ambient air as it descends. It is sealed upon recovery and measured with a continuous analyzer for trace gas mole fraction. The AirCore tubing can be shaped into a variety of configurations to accommodate any sampling platform; for the testing done in this work it was shaped into a 0.75-m-diameter coil. Measurements of CO2 and CH4 mole fractions in laboratory tests indicate a repeatability and lack of bias to better than 0.07 ppm (one sigma) for CO2 and 0.4 ppb for CH4 under various conditions. Comparisons of AirCore data with flask data from aircraft flights indicate a standard deviation of differences of 0.3 ppm and 5 ppb for CO2 and CH4, respectively, with no apparent bias. Accounting for longitudinal mixing, the expected measurement resolution for CO2 is 110 m at sea level, 260 m at 8000 m, and 1500 m at 20 000 m ASL after 3 h of storage, decreasing to 170, 390, and 2300 m, after 12 h. Validation tests confirm that the AirCore is a robust sampling device for many species on a variety of platforms, including balloons, unmanned aerial vehicles (UAVs), and aircraft.

Corresponding author address: Anna Karion, 325 Broadway, NOAA/ESRL, Boulder, CO 80305. Email: anna.karion@noaa.gov

Save