• Craik, A. D. D., and Leibovich S. , 1976: A rational model for Langmuir circulation. J. Fluid Mech., 73 , 401426.

  • D’Asaro, E. A., 2001: Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31 , 35303537.

  • D’Asaro, E. A., 2003a: Performance of autonomous Lagrangian floats. J. Atmos. Oceanic Technol., 20 , 896911.

  • D’Asaro, E. A., 2003b: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33 , 561579.

  • D’Asaro, E. A., 2004: Air–sea heat flux measurements from nearly neutrally buoyant floats. J. Atmos. Oceanic Technol., 21 , 10861094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Lien R. C. , 2000: Lagrangian measurements of waves and turbulence in stratified flows. J. Phys. Oceanogr., 30 , 641655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and McNeil C. , 2006: Air–sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats. J. Mar. Syst., 66 , 92109. doi:10.1016/j.jmarsys.2006.06.007.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., Farmer D. M. , Osse J. T. , and Dairiki G. T. , 1996: A Lagrangian float. J. Atmos. Oceanic Technol., 13 , 12301246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., Winters K. B. , and Lien R-C. , 2002: Lagrangian analysis of a convective mixed layer. J. Geophys. Res., 107 , 3040. doi:10.1029/2000JC000247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., Trowbridge J. H. , Edson J. B. , Plueddemann A. J. , Terray E. A. , and Fredericks J. J. , 2008: Measurements of momentum and heat transfer across the air–sea interface. J. Phys. Oceanogr., 38 , 10541072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and D’Asaro E. A. , 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38 , 15421562.

  • Harcourt, R. R., Steffen E. L. , Garwood R. W. , and D’Asaro E. A. , 2002: Fully Lagrangian floats in Labrador Sea deep convection: Comparison of numerical and experimental results. J. Phys. Oceanogr., 32 , 493509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and Pond S. , 1981: Open ocean momentum flux measurements in moderate to strong wind. J. Phys. Oceanogr., 11 , 324336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R-C., and D’Asaro E. A. , 2006: Measurement of turbulent kinetic energy dissipation rate with a Lagrangian float. J. Atmos. Oceanic Technol., 23 , 964976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R-C., D’Asaro E. A. , and Dairiki G. , 1998: Lagrangian frequency spectra of vertical velocity and vorticity in high-Reynolds-number oceanic turbulence. J. Fluid Mech., 362 , 177198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., Sullivan P. P. , and Moeng C-H. , 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334 , 130.

  • Min, H. S., and Noh Y. , 2004: Influence of the surface heating on Langmuir circulation. J. Phys. Oceanogr., 34 , 26302641.

  • Noh, Y., Min H. S. , and Raasch S. , 2004: Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34 , 720735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., Kang I. S. , Herold M. , and Raasch S. , 2006: Large eddy simulation of particle settling in the ocean mixed layer. Phys. Fluids, 18 , 085109. doi:10.1063/1.2337098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and Denbo D. W. , 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100 , 85018522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steffen, E. L., and D’Asaro E. A. , 2004: Meso- and submesoscale structure of a convecting field. J. Phys. Oceanogr., 34 , 4460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., McWilliams J. C. , and Melville W. K. , 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. I: Direct numerical simulations. J. Fluid Mech., 507 , 143174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., McWilliams J. C. , and Melville W. K. , 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593 , 405452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, E. A., Donelan M. A. , Agrawal Y. C. , Drennan W. M. , Kahma K. K. , Williams A. J. III, Hwang P. A. , and Kitaigorodski S. A. , 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26 , 792807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, R-S., and D’Asaro E. A. , 2004: Measurements of turbulent vertical kinetic energy in the ocean mixed layer from Lagrangian floats. J. Phys. Oceanogr., 34 , 19841990.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 111 8
PDF Downloads 182 86 21

Measurement of Vertical Kinetic Energy and Vertical Velocity Skewness in Oceanic Boundary Layers by Imperfectly Lagrangian Floats

View More View Less
  • 1 Applied Physics Laboratory, University of Washington, Seattle, Washington
Restricted access

Abstract

The effects of upward buoyancy on the accuracy with which Lagrangian floats can measure the Eulerian mean variance 〈wwE and skewness SwE of vertical fluid velocity w in the wind-driven upper-ocean boundary layer is investigated using both simulated floats in large-eddy simulation (LES) models and two float datasets. Nearly neutrally buoyant floats are repeatedly advected by the turbulent velocities across the boundary layer. Their vertical position Z is determined from pressure measurements; their W variance 〈WWF and skewness SWE are determined from the time series of float W = dZ/dt. If the float buoyancy is small, then the simulated floats measure the Eulerian velocity accurately; that is, δW2 = 〈WWF − 〈wwE and δSW = SWFSwE are small compared to 〈wwE and SwE respectively. If the floats are buoyant, and thus have an upward vertical velocity Wbias relative to the water, then δW2 and δSW can become significant. Buoyancy causes the floats to oversample both shallow depths and strong vertical velocities, leading to positive values of δW2 and negative values of δSW. The skewness SZF of depth measures the degree to which shallow depths are oversampled; it is shown to be a good predictor of Wbias/〈WWF1/2, δW2/〈WWF〉, and δSW/SWF over a wide range of float buoyancies and boundary layer forcings. Float data collected during two deployments confirm these results, but averaging times of several float days are typically required to obtain stable statistics. Significant differences in the magnitude of the effect may occur between datasets from different ocean forcing regimes and float designs. Other measures of float buoyancy are also useful predictors. These results can be used to correct existing float measurements of 〈wwE for the effects of buoyancy and also can be used as a means to operationally assess and control float buoyancy.

Corresponding author address: R. R. Harcourt, 1013 NE 40th Street, Applied Physics Laboratory, University of Washington, Seattle, WA 98105. Email: harcourt@apl.washington.edu

Abstract

The effects of upward buoyancy on the accuracy with which Lagrangian floats can measure the Eulerian mean variance 〈wwE and skewness SwE of vertical fluid velocity w in the wind-driven upper-ocean boundary layer is investigated using both simulated floats in large-eddy simulation (LES) models and two float datasets. Nearly neutrally buoyant floats are repeatedly advected by the turbulent velocities across the boundary layer. Their vertical position Z is determined from pressure measurements; their W variance 〈WWF and skewness SWE are determined from the time series of float W = dZ/dt. If the float buoyancy is small, then the simulated floats measure the Eulerian velocity accurately; that is, δW2 = 〈WWF − 〈wwE and δSW = SWFSwE are small compared to 〈wwE and SwE respectively. If the floats are buoyant, and thus have an upward vertical velocity Wbias relative to the water, then δW2 and δSW can become significant. Buoyancy causes the floats to oversample both shallow depths and strong vertical velocities, leading to positive values of δW2 and negative values of δSW. The skewness SZF of depth measures the degree to which shallow depths are oversampled; it is shown to be a good predictor of Wbias/〈WWF1/2, δW2/〈WWF〉, and δSW/SWF over a wide range of float buoyancies and boundary layer forcings. Float data collected during two deployments confirm these results, but averaging times of several float days are typically required to obtain stable statistics. Significant differences in the magnitude of the effect may occur between datasets from different ocean forcing regimes and float designs. Other measures of float buoyancy are also useful predictors. These results can be used to correct existing float measurements of 〈wwE for the effects of buoyancy and also can be used as a means to operationally assess and control float buoyancy.

Corresponding author address: R. R. Harcourt, 1013 NE 40th Street, Applied Physics Laboratory, University of Washington, Seattle, WA 98105. Email: harcourt@apl.washington.edu

Save