• Alber, C., Ware R. , Rocken C. , and Braun J. , 2000: Obtaining single path phase delays from GPS double differences. Geophys. Res. Lett., 27 , 26612664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Autret, E., and Piollé J-F. , 2007: ODYSSEA Global SST Analysis user manual. Marine Environment and Security for the European Area Integrated Project Rep. MERSEA-WP02-IFR-STR-001-1A, 29 pp. [Available online at http://cersat.ifremer.fr/content/download/1163/6269/file/MERSEA-WP02-IFR-STR-001-1A.pdf].

    • Search Google Scholar
    • Export Citation
  • Bauer, R. A., and Robinson M. K. , 1985: Description of the Bauer-Robinson Numerical Atlas. Compass Systems, 13 pp.

  • Bevington, P. R., and Robinson D. K. , 1992: Estimates of mean and errors. Data Reduction and Error Analysis for the Physical Sciences. 2nd ed. McGraw-Hill, 328 pp.

    • Search Google Scholar
    • Export Citation
  • Brisson, A., Le Borgne P. , and Marsouin A. , 2002: Results of one year preoperational production of sea surface temperatures from GOES-8. J. Atmos. Oceanic Technol., 19 , 16381652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., Weinreb M. , and Sullivan J. , 2001: Solar contamination effects on the infrared channels of the Advanced Very High Resolution Radiometer. J. Geophys. Res., 106 , 3346333469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casey, K. S., and Cornillon P. , 1999: A comparison of satellite and in situ-based sea surface temperature climatologies. J. Climate, 12 , 18481863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dash, P., Ignatov A. , Kihai Y. , Sapper J. , and Liang X. , 2009: Web-based global quality control and monitoring of NESDIS AVHRR SST products for long term stability and cross-platform consistency in near real-time. Preprints, 16th Conf. on Satellite Meteorology and Oceanography, Phoenix, AZ, Amer. Meteor. Soc., JP8.1. [Available online at http://ams.confex.com/ams/pdfpapers/144238.pdf].

    • Search Google Scholar
    • Export Citation
  • Dong, S., Gille S. T. , Sprintall J. , and Gentemann C. , 2006: Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the Southern Ocean. J. Geophys. Res., 111 , C04002. doi:10.1029/2005JC002934.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., and Coauthors, 1998: Solid-state radiometer measurements of sea surface skin temperature. J. Atmos. Oceanic Technol., 15 , 775787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., Minnett P. J. , Gentemann C. , Nightingale T. J. , Barton I. J. , Ward B. , and Murray M. J. , 2002: Toward improved validation of satellite surface skin temperature measurements for climate research. J. Climate, 15 , 353369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., and Coauthors, 2007: The Global Ocean Data Assimilation Experiment High-Resolution Sea Surface Temperature Pilot Project. Bull. Amer. Meteor. Soc., 88 , 11971213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, W. J., Baldwin D. J. , Schlussel P. , and Reynolds R. W. , 2001: Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements. J. Geophys. Res., 106 , 23872405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garraffo, Z. D., Mariano A. J. , Griffa A. , Veneziani C. , and Chassignet E. P. , 2001: Lagrangian data in a high-resolution numerical simulation of the North Atlantic I. Comparison with in situ drifter data. J. Mar. Syst., 29 , 157176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gemmill, W., Katz B. , and Li X. , 2007: Daily real-time, global sea surface temperature—High-resolution analysis: RTG_SST_HR. NOAA/NWS/NCEP/MMAB Office Note 260, 39 pp. [Available online at http://polar.ncep.noaa.gov/mmab/papers/on260/sst_office_note.pdf].

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., Donlon C. J. , Stuart-Menteth A. , and Wentz F. J. , 2003: Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett., 30 , 1140. doi:10.1029/2002GL016291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrum, G., Kidwell K. , and Winston W. , Eds. 2003: NOAA-KLM user’s guide with NOAA-N,-N′ supplement. NOAA/NESDIS/National Climatic Data Center. [Available online at http://www2.ncdc.noaa.gov/docs/klm/index.htm].

    • Search Google Scholar
    • Export Citation
  • Haines, S. L., Jedlovec G. J. , and Lazarus S. M. , 2007: A MODIS sea surface temperature composite for regional applications. IEEE Trans. Geosci. Remote Sens., 45 , 29192927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., and Coauthors, 2004: Global operational sea surface temperature and aerosol products from AVHRR: Current status, diagnostics, and potential enhancements. Preprints, 13th Conf. on Satellite Meteorology and Oceanography, Norfolk, VA, Amer. Meteor. Soc., P5.17. [Available online at http://ams.confex.com/ams/pdfpapers/78049.pdf].

    • Search Google Scholar
    • Export Citation
  • Kearns, E. J., Hanafin J. A. , Evans R. H. , Minnett P. J. , and Brown O. B. , 2000: An independent assessment of Pathfinder AVHRR sea surface temperature accuracy using the Marine Atmosphere Emitted Radiance Interferometer (MAERI). Bull. Amer. Meteor. Soc., 81 , 15251536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., Brohan P. , and Tett S. F. B. , 2007: A global climatology of the diurnal variations in sea-surface temperature and implications from MSU temperature trends. Geophys. Res. Lett., 34 , L05712. doi:10.1029/2006GL028920.

    • Search Google Scholar
    • Export Citation
  • Kilpatrick, K. A., Podesta G. P. , and Evans R. , 2001: Overview of the NOAA/NASA Advanced Very High Resolution Radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res., 106 , 91799198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazarus, S. M., Calvert C. G. , Splitt M. E. , Santos P. , Sharp D. W. , Blottman P. F. , and Spratt S. M. , 2007: Real-time, high-resolution, space–time analysis of sea surface temperatures from multiple platforms. Mon. Wea. Rev., 135 , 31583173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Borgne, P., Legendre G. , and Marsouin A. , 2007: Operational SST retrieval from MetOp/AVHRR. Proc. 2007 EUMETSAT Conf., Amsterdam, the Netherlands, EUMETSAT. [Available online at http://www.eumetsat.int/Home/Main/AboutEUMETSAT/Publications/ConferenceandWorkshopProceedings/2007/groups/cps/documents/document/ pdf_conf_p50_s5_01_leborgne_v.pdf].

    • Search Google Scholar
    • Export Citation
  • May, D. A., Parmeter M. M. , Olszewski D. S. , and McKenzie B. D. , 1998: Operational processing of satellite sea surface temperature retrievals at the Naval Oceanographic Office. Bull. Amer. Meteor. Soc., 79 , 397407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClain, E. P., 1989: Global sea surface temperatures and cloud screening for aerosol optical depth estimates. Int. J. Remote Sens., 10 , 763769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClain, E. P., Pichel W. G. , and Walton C. C. , 1985: Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res., 90 , 1158711601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and Harris A. R. , 1999: Towards the elimination of bias in satellite retrievals of sea surface temperatures 2. Comparison with in situ measurements. J. Geophys. Res., 104 , 2357923590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., Le Borgne P. , Marsouin A. , and Roquet H. , 2008: Optimal estimation of sea surface temperature from split-window observations. Remote Sens. Environ., 112 , 24692484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., Knuteson R. O. , Best F. A. , Osborne B. J. , Hanafin J. A. , and Brown O. B. , 2001: The Marine-Atmospheric Emitted Radiance Interferometer: A high-accuracy, seagoing infrared spectroradiometer. J. Atmos. Oceanic Technol., 18 , 9941013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittaz, J. P. D., Harris A. R. , and Sullivan J. T. , 2009: A physical method for the calibration of the AVHRR/3 thermal IR channels. Part I: The prelaunch calibration data. J. Atmos. Oceanic Technol., 26 , 9961019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noyes, E. J., Minnett P. J. , Remedios J. J. , Corlett G. K. , Good S. A. , and Llewellyn-Jones D. T. , 2006: The accuracy of the AATSR sea surface temperatures in the Caribbean. Remote Sens. Environ., 101 , 3851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Carroll, A. G., Saunders R. W. , and Watts J. G. , 2006a: The measurement of the sea surface temperature by satellites from 1991 to 2005. J. Atmos. Oceanic Technol., 23 , 15731582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Carroll, A. G., Watts J. G. , Horrocks L. A. , Saunders R. W. , and Rayner N. A. , 2006b: Validation of the AATSR Meteo product sea surface temperature. J. Atmos. Oceanic Technol., 23 , 711726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ostle, B., and Malone L. , 1988: Statistics in Research. Iowa State University Press, 664 pp.

  • Reynolds, R. W., Rayner N. A. , Smith T. M. , Stokes D. C. , and Wang W. , 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Smith T. M. , Liu C. , Chelton D. B. , Casey K. S. , and Schlax M. G. , 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20 , 54735496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stark, J. D., Donlon C. J. , Martin M. J. , and McCulloch M. E. , 2007: OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. Extended Abstracts,OCEANS 2007, Marine Challenges: Coastline to Deep Sea, Aberdeen, Scotland, IEEE, doi:10.1109/OCEANSE.2007.4302251.

    • Search Google Scholar
    • Export Citation
  • Stark, J. D., Donlon C. , O’Carroll A. , and Corlett G. , 2008: Determination of AATSR biases using the OSTIA SST analysis system and a matchup database. J. Atmos. Oceanic Technol., 25 , 12081217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuart-Menteth, A. C., Robinson I. S. , and Donlon C. J. , 2005: Sensitivity of the diurnal warm layer to meteorological fluctuations. Part 2: A new parameterization for diurnal warming. Int. J. Remote Sens., 10 , 209234.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., Emery W. J. , and Wick G. A. , 1997: The multi-channel infrared sea truth radiometric calibrator (MISTRC). J. Atmos. Oceanic Technol., 14 , 243252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiébaux, J., Rogers E. , Wang W. , and Katz B. , 2003: A new high-resolution blended real-time global sea surface temperature analysis. Bull. Amer. Meteor. Soc., 84 , 645656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tietjen, G. L., 1986: The analysis and detection of outliers. Goodness-of-Fit Techniques, 2nd ed. R. B. D’Agostino and M. A. Stephens, Eds., Marcel Dekker, 497–522.

    • Search Google Scholar
    • Export Citation
  • Trishchenko, A. P., 2002: Removing unwanted fluctuations in the AVHRR thermal calibration data using robust techniques. J. Atmos. Oceanic Technol., 19 , 19391954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vázquez-Cuervo, J., Armstrong E. , and Harris A. , 2004: The effect of aerosols and clouds on the retrieval of satellite derived infrared sea surface temperatures. J. Climate, 17 , 39213933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, C. C., 1988: Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data. J. Appl. Meteor., 27 , 115124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, C. C., Pichel W. G. , and Sapper J. F. , 1998: The development and operational applications of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res., 103 , 2799928012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and Wu X. , 2008: GSICS tools used to compare IASI and AIRS. GSICS Quarterly, Vol. 2, No. 4, 4. [Available online at http://www.star.nesdis.noaa.gov/smcd/spb/calibration/icvs/GSICS/documents/newsletter/GSICS_Quarterly_Vol2No4_2008.pdf].

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 311 158 11
PDF Downloads 207 118 8

The SST Quality Monitor (SQUAM)

View More View Less
  • 1 NOAA/NESDIS, Center for Satellite Applications and Research, Camp Springs, Maryland, and Cooperative Institute for Research in the Atmospheres, Colorado State University, Fort Collins, Colorado
  • | 2 NOAA/NESDIS/STAR, Camp Springs, Maryland
  • | 3 NOAA/NESDIS/STAR, Camp Springs, Maryland, and Perot Systems Government Services, Fairfax, Virginia
  • | 4 NOAA/NESDIS/Office of Satellite Data Processing and Distribution, Camp Springs, Maryland
Restricted access

Abstract

The National Environmental Satellite, Data, and Information Service (NESDIS) has been operationally generating sea surface temperature (SST) products (TS) from the Advanced Very High Resolution Radiometers (AVHRR) onboard NOAA and MetOp-A satellites since the early 1980s. Customarily, TS are validated against in situ SSTs. However, in situ data are sparse and are not available globally in near–real time (NRT). This study describes a complementary SST Quality Monitor (SQUAM), which employs global level 4 (L4) SST fields as a reference standard (TR) and performs statistical analyses of the differences ΔTS = TSTR. The results are posted online in NRT. The TS data that are analyzed are the heritage National Environmental Satellite, Data, and Information Service (NESDIS) SST products from NOAA-16, -17, -18, and -19 and MetOp-A from 2001 to the present. The TR fields include daily Reynolds, real-time global (RTG), Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA), and Ocean Data Analysis System for Marine Environment and Security for the European Area (MERSEA) (ODYSSEA) analyses. Using multiple fields facilitates the distinguishing of artifacts in satellite SSTs from those in the L4 products. Global distributions of ΔTS are mapped and their histograms are analyzed for proximity to Gaussian shape. Outliers are handled using robust statistics, and the Gaussian parameters are trended in time to monitor SST products for stability and consistency. Additional TS checks are performed to identify retrieval artifacts by plotting ΔTS versus observational parameters. Cross-platform TS biases are evaluated using double differences, and cross-L4 TR differences are assessed using Hovmöller diagrams. SQUAM results compare well with the customary in situ validation. All satellite products show a high degree of self- and cross-platform consistency, except for NOAA-16, which has flown close to the terminator in recent years and whose AVHRR is unstable.

Corresponding author address: Prasanjit Dash, CSU/CIRA Research Scientist II, Room 601-1, 5200 Auth Rd., NOAA/NESDIS/STAR, WWB, Camp Springs, MD 20746. Email: prasanjit.dash@noaa.gov

Abstract

The National Environmental Satellite, Data, and Information Service (NESDIS) has been operationally generating sea surface temperature (SST) products (TS) from the Advanced Very High Resolution Radiometers (AVHRR) onboard NOAA and MetOp-A satellites since the early 1980s. Customarily, TS are validated against in situ SSTs. However, in situ data are sparse and are not available globally in near–real time (NRT). This study describes a complementary SST Quality Monitor (SQUAM), which employs global level 4 (L4) SST fields as a reference standard (TR) and performs statistical analyses of the differences ΔTS = TSTR. The results are posted online in NRT. The TS data that are analyzed are the heritage National Environmental Satellite, Data, and Information Service (NESDIS) SST products from NOAA-16, -17, -18, and -19 and MetOp-A from 2001 to the present. The TR fields include daily Reynolds, real-time global (RTG), Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA), and Ocean Data Analysis System for Marine Environment and Security for the European Area (MERSEA) (ODYSSEA) analyses. Using multiple fields facilitates the distinguishing of artifacts in satellite SSTs from those in the L4 products. Global distributions of ΔTS are mapped and their histograms are analyzed for proximity to Gaussian shape. Outliers are handled using robust statistics, and the Gaussian parameters are trended in time to monitor SST products for stability and consistency. Additional TS checks are performed to identify retrieval artifacts by plotting ΔTS versus observational parameters. Cross-platform TS biases are evaluated using double differences, and cross-L4 TR differences are assessed using Hovmöller diagrams. SQUAM results compare well with the customary in situ validation. All satellite products show a high degree of self- and cross-platform consistency, except for NOAA-16, which has flown close to the terminator in recent years and whose AVHRR is unstable.

Corresponding author address: Prasanjit Dash, CSU/CIRA Research Scientist II, Room 601-1, 5200 Auth Rd., NOAA/NESDIS/STAR, WWB, Camp Springs, MD 20746. Email: prasanjit.dash@noaa.gov

Save