• Chu, P. C., 1993: Generation of low-frequency unstable modes in a coupled equatorial troposphere and ocean mixed layer model. J. Atmos. Sci., 50 , 731749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., 2006: P-Vector Inverse Method. Springer, 605 pp.

  • Chu, P. C., Fralick C. R. , Haeger S. D. , and Carron M. J. , 1997: A parametric model for the Yellow Sea thermal variability. J. Geophys. Res., 102 , 1049910508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., Wang Q. Q. , and Bourke R. H. , 1999: A geometric model for the Beaufort/Chukchi Sea thermohaline structure. J. Atmos. Oceanic Technol., 16 , 613632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., Fan C. , and Liu W. T. , 2000: Determination of vertical thermal structure from sea surface temperature. J. Atmos. Oceanic Technol., 17 , 971979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., Liu Q. , Jia Y. , and Fan C. , 2002: Evidence of barrier layer in the Sulu and Celebes Seas. J. Phys. Oceanogr., 32 , 32993309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Defant, A., 1961: Physical Oceanography. Vol. 1. Pergamon, 729 pp.

  • Eriksen, C. C., Osse T. J. , Light R. D. , Wen T. , Lehman T. W. , Sabin P. L. , Ballard J. W. , and Chiodi A. M. , 2001: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26 , 424436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., Rochford P. A. , and Hurlburt H. E. , 2000: Mixed layer depth variability and barrier layer formation over the North Pacific Ocean. J. Geophys. Res., 105 , 1678316801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorbacher, K., Dommenget D. , Niiler P. P. , and Kohl A. , 2006: Ocean mixed layer depth: A subsurface proxy of ocean–atmosphere variability. J. Geophys. Res., 111 , C07010. doi:10.1029/2003JC002157.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., and Lindstrom E. , 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96 , 33433358.

  • Mahoney, K. L., Grembowicz K. , Bricker B. , Crossland S. , Bryant D. , and Torres M. , 2009: RIMPAC 08: Naval Oceanographic Office glider operations. Ocean Sensing and Monitoring, W. Hou, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 7317), 731701, 10.1117/12.820492.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1964: The thermal structure of the eastern Pacific Ocean. Dtsch. Hydrogr. Z., 8A , 684.

  • Zhang, X., and Zhang J. , 2001: Heat and freshwater budgets and pathways in the Arctic Mediterranean in a coupled ocean/sea-ice model. J. Oceanogr., 57 , 207234.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 160 80 2
PDF Downloads 145 81 0

Optimal Linear Fitting for Objective Determination of Ocean Mixed Layer Depth from Glider Profiles

View More View Less
  • 1 Department of Oceanography, Naval Postgraduate School, Monterey, California
Restricted access

Abstract

A new optimal linear fitting method has been developed to determine mixed layer depth from profile data. This methodology includes three steps: 1) fitting the profile data from the first point near the surface to a depth using a linear polynomial, 2) computing the error ratio of absolute bias of few data points below that depth versus the root-mean-square error of data points from the surface to that depth between observed and fitted data, and 3) finding the depth (i.e., the mixed layer depth) with maximum error ratio. Temperature profiles in the western North Atlantic Ocean over 14 November–5 December 2007, collected from two gliders (Seagliders) deployed by the Naval Oceanographic Office, are used to demonstrate the capability of this method. The mean quality index (1.0 for perfect determination) for determining mixed layer depth is greater than 0.97, which is much higher than the critical value of 0.8 for well-defined mixed layer depth with that index.

Corresponding author address: Dr. Peter C. Chu, Department of Oceanography, Naval Postgraduate School, 833 Dyer Rd., Monterey, CA 93943. Email: pcchu@nps.edu

Abstract

A new optimal linear fitting method has been developed to determine mixed layer depth from profile data. This methodology includes three steps: 1) fitting the profile data from the first point near the surface to a depth using a linear polynomial, 2) computing the error ratio of absolute bias of few data points below that depth versus the root-mean-square error of data points from the surface to that depth between observed and fitted data, and 3) finding the depth (i.e., the mixed layer depth) with maximum error ratio. Temperature profiles in the western North Atlantic Ocean over 14 November–5 December 2007, collected from two gliders (Seagliders) deployed by the Naval Oceanographic Office, are used to demonstrate the capability of this method. The mean quality index (1.0 for perfect determination) for determining mixed layer depth is greater than 0.97, which is much higher than the critical value of 0.8 for well-defined mixed layer depth with that index.

Corresponding author address: Dr. Peter C. Chu, Department of Oceanography, Naval Postgraduate School, 833 Dyer Rd., Monterey, CA 93943. Email: pcchu@nps.edu

Save