• Abramowitz, M., and Stegun I. A. , 1972: Handbook of Mathematical Functions. Dover, 1046 pp.

  • Alfsen, E. M., 1971: Compact Convex Sets and Boundary Integrals. Springer, 210 pp.

  • Bauer, E., 1996: Characteristic frequency distributions of remotely sensed in situ and modeled wind speeds. Int. J. Climatol., 16 , 10871102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blinnikov, S., and Moessner R. , 1998: Expansion for nearly Gaussian distributions. Astron. Astrophys. Suppl. Ser., 130 , 193205.

  • Brock, F. V., Crawford K. C. , Elliott R. L. , Cuperus G. W. , Stadler S. J. , Johnson H. L. , and Eilts M. D. , 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12 , 519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capps, S. B., and Zender C. S. , 2008: Observed and CAM3 GCM sea surface wind speed distributions: Characterization, comparison, and bias reduction. J. Climate, 21 , 65696585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiles, J. P., and Delfiner P. , 1999: Geostatistics: Modeling Spatial Uncertainty. J. Wiley & Sons, 695 pp.

  • Efromovich, S., 1999: Nonparametric Curve Estimation, Methods, Theory and Applications. Springer-Verlag, 411 pp.

  • Feely, R. A., Wanninkhof R. , McGillis W. , Carr M-E. , and Cosca C. E. , 2004: Effects of wind speed and gas exchange parameterizations on air-sea CO2 fluxes in the equatorial Pacific Ocean. J. Geophys. Res., 109 , C08S03. doi:10.1029/2003JC001896.

    • Search Google Scholar
    • Export Citation
  • Garcia-Bustamante, E., Gonzalex-Rouco J. F. , Jimenez P. A. , Navarro J. , and Montavez J. P. , 2008: The influence of the Weibull assumption on monthly wind energy estimation. Wind Energy, 11 , 483502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghosh, B., 1951: Random distances within a rectangle and between two rectangles. Bull. Calcutta Math. Soc., 43 , 1724.

  • Hennessey, J. O., 1977: Some aspects of wind power statistics. J. Appl. Meteor., 16 , 119128.

  • Holland, J. Z., 1973: A statistical method for analyzing wave shapes and phase relationships of fluctuating geophysical variables. J. Phys. Oceanogr., 3 , 139155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isemer, H-J., and Hasse L. , 1991: The scientific Beaufort equivalent scale: Effects on wind statistics and climatological air–sea flux estimates in the North Atlantic Ocean. J. Climate, 4 , 819836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., Osborn T. J. , and Briffa K. R. , 1997: Estimating sampling errors in large-scale temperature averages. J. Climate, 10 , 25482568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Journel, A. G., and Huijbregts Ch J. , 1978: Mining Geostatistics. Academic Press, 600 pp.

  • Justus, C. G., Mani K. , and Mikhail A. S. , 1979: Interannual and month-to-month variations of wind speed. J. Appl. Meteor., 18 , 913920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1941: Proof of relations connected with the tetrachoric series and its generalizations. Biometrika, 32 , 196198.

  • Lackner, M. A., Rogers A. L. , and Manwell J. F. , 2008: Uncertainty analysis in MCP-based wind resource assessment and energy production estimation. J. Sol. Energy Eng., 130 , 031006. doi:10.1115/1.2931499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., and Li X. , 2005: MEP-type distribution function: A better alternative to Weibull function for wind speed distributions. Renew. Energy, 30 , 12211240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., Tang W. , and Xie X. , 2008: Wind power distribution over the ocean. Geophys. Res. Lett., 35 , L13808. doi:10.1029/2008GL034172.

  • Mahrt, L. T., and Sun J. , 1995: The subgrid velocity scale in the bulk aerodynamic relationship for spatially averaged scalar fluxes. Mon. Wea. Rev., 123 , 30323041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheron, G., 1976: Forecasting block grade distributions: The transfer functions. Advanced Geostatistics in the Mining Industry, M. Guarascio, M. David, and C. Huijbreghts, Eds., Reidel, 237–251.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., Smith D. , and Wentz F. , 2001: A 10 year intercomparison between collocated Special Sensor Microwave Imager oceanic surface wind speed retrievals and global analyses. J. Geophys. Res., 106 , 1173111742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2006a: The probability distribution of sea surface wind speeds. Part I: Theory and sea winds observations. J. Climate, 19 , 497520.

  • Monahan, A. H., 2006b: The probability distribution of sea surface wind speeds. Part II: Dataset intercomparison and seasonal variability. J. Climate, 19 , 521534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2007: Empirical models of the probability distribution of sea surface wind speeds. J. Climate, 20 , 57985814.

  • Morrissey, M. L., and Greene J. S. , 2008: A theoretical framework for the sampling error variance for three-dimensional climate averages of ICOADS monthly ship data. Theor. Appl. Climatol., 96 , 235248. doi:10.1007/s00704-008-0027-3.

    • Search Google Scholar
    • Export Citation
  • Morrissey, M. L., Maliekal J. A. , Greene J. S. , and Wang J. , 1995: The uncertainty of simple spatial averages using rain gauge networks. Water Resour. Res., 31 , 20112017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortiz, J. M., Oz B. , and Deutsch C. V. , 2005: A step by step guide to bi-Gaussian disjunctive kriging. Quantitative Geology and Geostatistics, Springer, 1097–1102.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., 1984: The statistical effects of incomplete sampling of coherent data series. J. Climatol., 4 , 445449.

  • Pavia, E. G., and O’Brien J. J. , 1986: Weibull statistics of wind speed over the ocean. J. Climate Appl. Meteor., 25 , 13241332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivoirard, J., 1994: Introduction to Disjunctive Kriging and Non-linear Geostatistics. Oxford University Press, 180 pp.

  • Rodríguez-Iturbe, I., and Mejía J. M. , 1974: The design of rainfall networks in time and space. Water Resour. Res., 10 , 713728.

  • Rozanov, Y. A., 1997: Probability Theory: A Concise Course. Courier Dover, 148 pp.

  • Silverman, B. W., 1998: Density Estimation. Chapman and Hall, 175 pp.

  • van der Marel, R. P., and Franx M. , 1993: A new method for the identification of non-Gaussian line profiles in elliptical galaxies. Astrophys. J., 407 , 525539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and Esbensen S. , 1998: Subgrid surface fluxes in fair weather conditions during TOGA COARE: Observational estimates and parameterizations. Mon. Wea. Rev., 126 , 620633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wackernagel, H., 2003: Multivariate Geostatistics. Springer, 387 pp.

  • Wang, C., Weisberg R. H. , and Yang H. , 1998: Effects of the wind speed–evaporation–SST feedback on the El Niño–Southern Oscillation. J. Atmos. Sci., 56 , 13911403.

    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97 , 73737382.

  • Wright, D. G., and Thompson K. R. , 1983: Time-averaged forms of the nonlinear stress law. J. Phys. Oceanogr., 13 , 341345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilinskas, A., 2003: On the distribution of the distance between two points in a cube. Random Oper. Stochastic Equations, 11 , 2124.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 39 2
PDF Downloads 49 31 1

An Isofactorial Change-of-Scale Model for the Wind Speed Probability Density Function

Mark L. MorrisseySchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Mark L. Morrissey in
Current site
Google Scholar
PubMed
Close
,
Angie AlbersEnvironmental Verification and Analysis Center, Norman, Oklahoma

Search for other papers by Angie Albers in
Current site
Google Scholar
PubMed
Close
,
J. Scott GreeneEnvironmental Verification and Analysis Center, Norman, Oklahoma

Search for other papers by J. Scott Greene in
Current site
Google Scholar
PubMed
Close
, and
Susan PostawkoSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Susan Postawko in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The wind speed probability density function (PDF) is used in a variety of applications in meteorology, oceanography, and climatology usually as a dataset comparison tool of a function of a quantity such as momentum flux or wind power density. The wind speed PDF is also a function of measurement scale and sampling error. Thus, quantities derived from a function of the wind PDF estimated from measurements taken at different scales may yield vastly different results. This is particularly true in the assessment of wind power density and studies of model subgrid-scale processes related to surface energy fluxes. This paper presents a method of estimating the PDF of wind speed representing a specific scale, whether that is in time, space, or time–space. The concepts used have been developed in the field of nonlinear geostatistics but have rarely been applied to meteorological problems. The method uses an expansion of orthogonal polynomials that incorporates a scaling parameter whose values can be found from the variance of wind speed at the desired scale. Possible uses of this technique are for scale homogenization of model or satellite datasets used in comparison studies, investigations of subgrid-scale processes for development of parameterization schemes, or wind power density assessment.

Corresponding author address: Mark L. Morrissey, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072. Email: mmorriss@ou.edu

Abstract

The wind speed probability density function (PDF) is used in a variety of applications in meteorology, oceanography, and climatology usually as a dataset comparison tool of a function of a quantity such as momentum flux or wind power density. The wind speed PDF is also a function of measurement scale and sampling error. Thus, quantities derived from a function of the wind PDF estimated from measurements taken at different scales may yield vastly different results. This is particularly true in the assessment of wind power density and studies of model subgrid-scale processes related to surface energy fluxes. This paper presents a method of estimating the PDF of wind speed representing a specific scale, whether that is in time, space, or time–space. The concepts used have been developed in the field of nonlinear geostatistics but have rarely been applied to meteorological problems. The method uses an expansion of orthogonal polynomials that incorporates a scaling parameter whose values can be found from the variance of wind speed at the desired scale. Possible uses of this technique are for scale homogenization of model or satellite datasets used in comparison studies, investigations of subgrid-scale processes for development of parameterization schemes, or wind power density assessment.

Corresponding author address: Mark L. Morrissey, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072. Email: mmorriss@ou.edu

Save