• Alcala, C. M., and Dessler A. E. , 2002: Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. J. Geophys. Res., 107 , 4792. doi:10.1029/2002JD002457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caplan, P., Derber J. , Gemmill W. , Hong S. Y. , Pan H-L. , and Parrish D. , 1997: Changes to the 1995 NCEP operational MRF model analysis/forecast system. Wea. Forecasting, 12 , 581594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and da Silva A. M. , 2003: The choice of variable for atmospheric moisture analysis. Mon. Wea. Rev., 131 , 155171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and Wu W. S. , 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126 , 22872299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J. C., Parrish D. F. , and Lord S. J. , 1991: The new global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6 , 538547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dethof, A., O’Neill A. , Slingo J. M. , and Smit H. G. J. , 1999: A mechanism for moistening the lower stratosphere involving the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 125 , 10791106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1995: Evidence of meridian motion in the summer lower stratosphere adjacent to monsoon regions. J. Geophys. Res., 100 , (D8). 1667516688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eguchi, N., and Shiotani M. , 2004: Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere. J. Geophys. Res., 109 , D12106. doi:10.1029/2003JD004314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., and Coauthors, 2008: Comparison of upper tropospheric water vapor observations from the Microwave Limb Sounder and Atmospheric Infrared Sounder. J. Geophys. Res., 113 , D22110. doi:10.1029/2008JD010000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P., de F M. , and Shine K. P. , 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29 , 1086. doi:10.1029/2001GL013909.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and Coauthors, 2008: Validation of ACE-FTS satellite data in the upper troposphere/lower stratosphere (UTLS) using non-coincident measurements. Atmos. Chem. Phys., 8 , 14831499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Soden B. J. , 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25 , 441475.

  • Janjic, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82 , 271285.

  • Kleist, D. T., Derber J. C. , Treadon R. , Parrish D. , Errico R. , and Yang R. , 2009: Improving incremental balance in the GSI 3DVAR analysis system. Mon. Wea. Rev., 137 , 10461060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2005: EOS MLS version 1.5 level 2 data quality and description document. Jet Propulsion Laboratory Document JPL D-32382, 76 pp. [Available online at http://mls.jpl.nasa.gov/data/v1-5-supplement-29jul05b.pdf].

    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2007: Version 2.2 level 2 data quality and description document. Jet Propulsion Laboratory Document JPL D-33509, 115 pp. [Available online at http://mls.jpl.nasa.gov/data/v2-2_data_quality_document.pdf].

    • Search Google Scholar
    • Export Citation
  • Luo, Z., Kley D. , Johnson R. H. , and Smit H. , 2008: Ten years of measurements of tropical upper-tropospheric water vapor by MOZAIC. Part II: Assessing the ECMWF humidity analysis. J. Climate, 21 , 14491466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., Janjic Z. I. , Nickovic S. , Gavrilov D. , and Deaven D. G. , 1988: The step-mountain coordinate: Model description and performance for cases of alpine lee cyclogenesis and for a case of an Appalachian redevelopment. Mon. Wea. Rev., 116 , 14931518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MetEd, 2007: GFS introduction. [Available online at http://www.meted.ucar.edu].

  • Oikonomou, E. K., and O’Neill A. , 2006: Evaluation of ozone and water vapor fields from the ECMWF reanalysis ERA-40 during 1991–1999 in comparison with UARS satellite and MOZAIC aircraft observations. J. Geophys. Res., 111 , D14109. doi:10.1029/2004JD005341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovarlez, J., and van Velthoven P. , 1997: Comparison of water vapor measurements with data retrieved from ECMWF analyses during the POLINAT experiment. J. Appl. Meteor., 36 , 13291335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovarlez, J., van Velthoven P. , Sachse G. , Vay S. , Schlager H. , and Ovarlez H. , 2000: Comparison of water vapor measurements from POLINAT 2 with ECMWF analyses in high-humidity conditions. J. Geophys. Res., 105 , 37373744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and Derber J. C. , 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120 , 17471763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., McNally A. , Andersson E. , Courtier P. , Unde’n P. , Eyre J. , Hollingsworth A. , and Bouttier F. , 1998: The ECMWF implementation of three-dimensional variational assimilation (3DVar). II: Structure functions. Quart. J. Roy. Meteor. Soc., 124 , 18091829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raval, A., and Ramanathan V. , 1989: Observational determination of the greenhouse effect. Nature, 342 , 758761.

  • Read, W. G., and Coauthors, 2007: Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation. J. Geophys. Res., 112 , D24S35. doi:10.1029/2007JD008752.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., Garcia R. R. , Rowland F. S. , and Wuebles D. J. , 1986: On the depletion of Antarctic ozone. Nature, 321 , 755758.

  • Sparling, L. C., 2000: Statistical perspectives on stratospheric transport. Rev. Geophys., 38 , 417436.

  • Spichtinger, P., Gierens K. , and Read W. , 2003: The global distribution of ice-supersaturated regions as seen by the Microwave Limb Sounder. Quart. J. Roy. Meteor. Soc., 129 , 33913410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SPARC, 2000: Assessment of upper tropospheric and stratospheric water vapour. Stratospheric Processes and their Role in Climate, WMO World Climate Research Project Rep. 113, WCRP-SPARC Rep. 2, 312 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 129 48 6
PDF Downloads 72 36 5

Comparison of Aura MLS Water Vapor Measurements with GFS and NAM Analyses in the Upper Troposphere–Lower Stratosphere

Le Van ThienDepartment of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by Le Van Thien in
Current site
Google Scholar
PubMed
Close
,
William A. Gallus Jr.Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by William A. Gallus Jr. in
Current site
Google Scholar
PubMed
Close
,
Mark A. OlsenUniversity of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Mark A. Olsen in
Current site
Google Scholar
PubMed
Close
, and
Nathaniel LiveseyJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Nathaniel Livesey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Water vapor mixing ratios in the upper troposphere and lower stratosphere measured by the Aura Microwave Limb Sounder (MLS) version 2.2 instrument have been compared with Global Forecast System (GFS) analyses at five levels within the 300–100-hPa layer and North American Mesoscale (NAM) model analyses at six levels within the 300–50-hPa layer over the two years of 2005 and 2006 at four analysis times (e.g., 0000, 0600, 1200, and 1800 UTC). Probability density functions of the vapor mixing ratios suggest that both analyses are often moister than Aura MLS values, but NAM model analyses agree somewhat better with Aura MLS measurements than GFS model analyses over the same North American domain at the five common levels. Examining five subsets of the global GFS domain, the GFS model analysis is moister than Aura MLS estimates everywhere but at 150 and 100 hPa in all regions outside of the tropics. NAM model analysis water vapor mixing ratios exceeded the Aura MLS values at all levels from 250 to 150 hPa in all four seasons of both years and some seasons at 100 and 50 hPa. Moist biases in winter and spring of both years were similar at all levels, but these moist biases in summer and fall were smaller in 2005 than in 2006 at all levels. These differences may be due to the change in the NAM from using the Eta Model to using the Weather Research and Forecasting model (WRF) in June 2006.

* Current affiliation: University of Hawaii at Manoa, Honolulu, Hawaii.

Corresponding author address: Le Van Thien, University of Hawaii at Manoa, 2525 Correa Rd., HIG 350, Honolulu, HI 96822. Email: thienle@hawaii.edu

Abstract

Water vapor mixing ratios in the upper troposphere and lower stratosphere measured by the Aura Microwave Limb Sounder (MLS) version 2.2 instrument have been compared with Global Forecast System (GFS) analyses at five levels within the 300–100-hPa layer and North American Mesoscale (NAM) model analyses at six levels within the 300–50-hPa layer over the two years of 2005 and 2006 at four analysis times (e.g., 0000, 0600, 1200, and 1800 UTC). Probability density functions of the vapor mixing ratios suggest that both analyses are often moister than Aura MLS values, but NAM model analyses agree somewhat better with Aura MLS measurements than GFS model analyses over the same North American domain at the five common levels. Examining five subsets of the global GFS domain, the GFS model analysis is moister than Aura MLS estimates everywhere but at 150 and 100 hPa in all regions outside of the tropics. NAM model analysis water vapor mixing ratios exceeded the Aura MLS values at all levels from 250 to 150 hPa in all four seasons of both years and some seasons at 100 and 50 hPa. Moist biases in winter and spring of both years were similar at all levels, but these moist biases in summer and fall were smaller in 2005 than in 2006 at all levels. These differences may be due to the change in the NAM from using the Eta Model to using the Weather Research and Forecasting model (WRF) in June 2006.

* Current affiliation: University of Hawaii at Manoa, Honolulu, Hawaii.

Corresponding author address: Le Van Thien, University of Hawaii at Manoa, 2525 Correa Rd., HIG 350, Honolulu, HI 96822. Email: thienle@hawaii.edu

Save