• Beach, R. A., Sternberg R. W. , and Johnson R. , 1992: A fiber optic sensor for monitoring suspended sediment. Mar. Geol., 103 , 513520.

  • Butt, T., Russell P. , Puleo J. A. , Miles J. , and Masselink G. , 2004: The influence of bore turbulence on sediment transport in the swash and inner surf zones. Cont. Shelf Res., 24 , 757771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chua, S. K., Cleaver J. W. , and Millward A. , 1986: The measurement of salt concentration in a plume using a conductivity probe. J. Hydraul. Res., 25 , 171176.

    • Search Google Scholar
    • Export Citation
  • Conley, D. C., and Beach R. A. , 2003: Cross-shore sediment transport partitioning in the nearshore during a storm event. J. Geophys. Res., 108 , 3065. doi:10.1029/2001JC001230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowen, E. A., Liao Q. , Variano E. , Dudley R. D. , and Park Y. S. , 2006: An insitu boroscopic quantitative imaging technique applied to large scale laboratory swash zone flows. Eos, Trans. Amer. Geophys. Union, 87 .(Ocean Sci. Meet. Suppl.),. Abstract OS430-03.

    • Search Google Scholar
    • Export Citation
  • Dick, J. E., 1989: Sediment Transport in Oscillatory Flow. University of Cambridge, 169 pp.

  • Dick, J. E., and Sleath J. F. A. , 1991: Velocities and concentrations in oscillatory flow over beds of sediment. J. Fluid Mech., 233 , 165196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dohmen-Janssen, M., and Hanes D. M. , 2002: Sheet flow dynamics under monochromatic nonbreaking waves. J. Geophys. Res., 107 , 121.

  • Dudley, R. D., 2007: A boroscopic quantitative imaging technique for sheet flow measurements. M.S. thesis, Dept. of Civil and Environmental Engineering, Cornell University, 82 pp.

  • Gibson, C. H., and Schwarz W. H. , 1963: Detection of conductivity fluctuations in a turbulent flow field. J. Fluid Mech., 16 , 356364.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., Meagher T. B. , Aagaard E. E. , and Hess W. C. , 1981: A salt-stratified tank for measuring the dynamic response of conductivity probes. IEEE J. Oceanic Eng., 6 , 113118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haines, M. A., and Johnson B. D. , 1995: Injected bubble populations in seawater and fresh water measured by a photographic method. J. Geophys. Res., 100 , 70577068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. D., and Woods D. J. , 1988: The dynamic response of the two-electrode conductivity cell. IEEE J. Oceanic Eng., 13 , 118123.

  • Horikawa, K., Watanbe A. , and Katori S. , 1982: Sediment transport under sheet flow conditions. Proc. 18th Int. Conf. on Coastal Engineering, Cape Town, South Africa, ASCE, 1335–1352.

    • Search Google Scholar
    • Export Citation
  • Horn, D. P., and Mason T. , 1994: Swash zone sediment transport modes. Mar. Geol., 120 , 309325.

  • Komar, P. D., 1978: Relative quantities of suspension versus bed-load transport on beaches. J. Sed. Petrol., 48 , 921932.

  • Miles, J., Butt T. , and Russell P. , 2006: Swash zone sediment dynamics: A comparison of a dissipative and an intermediate beach. Mar. Geol., 231 , 181200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ncube, F., Kastrinakis E. G. , Nychas S. G. , and Lavdakis K. E. , 1991: Drifting behaviour of a conductivity probe. J. Hydraul. Res., 29 , 643654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newberger, P. A., and Allen J. S. , 2007: Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to Duck94. J. Geophys. Res., 112 , C08019. doi:10.1029/2006JC003474.

    • Search Google Scholar
    • Export Citation
  • O’Donoghue, T., and Wright S. , 2004a: Concentrations in oscillatory sheet flow for well sorted and graded sands. Coast. Eng., 50 , 117138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Donoghue, T., and Wright T. , 2004b: Flow tunnel measurements of velocities and sand flux in oscillatory sheet flow for well-sorted and graded sands. Coast. Eng., 51 , 11631184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puleo, J. A., Beach R. A. , Holman R. A. , and Allen J. S. , 2000: Swash zone sediment suspension and transport and the importance of bore-generated turbulence. J. Geophys. Res., 105 , 1702117044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puleo, J. A., Kooney T. N. , and Johnson, R. V. II, 2004: Laboratory generation of air bubble curtains of various size distributions. Rev. Sci. Instrum., 75 , 45584563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puleo, J. A., Johnson, R. V. II, Butt T. , Kooney T. , and Holland K. T. , 2006: The effect of bubbles on optical backscatter sensors. Mar. Geol., 230 , 8797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribberink, J. S., and Al-Salem A. A. , 1995: Sheet flow and suspension in oscillatory boundary layers. Coast. Eng., 25 , 205225.

  • Scott, N., Hsu T-J. , and Cox D. , 2009: Steep wave, turbulence, and sediment concentration statistics beneath a breaking wave field and their implications for sediment transport. Cont. Shelf Res., 29 , 23032317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slauenwhite, D. E., and Johnson B. D. , 1999: Bubble shattering: Difference in bubble formation in fresh and seawater. J. Geophys. Res., 104 , 32653275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vagle, S., and Farmer D. M. , 1998: A comparison of four methods for bubble size and void fraction measurements. IEEE J. Oceanic Eng., 23 , 211222.

  • Voloudakis, K., Vrahliotis P. , Kastrinakis E. G. , and Nychas S. G. , 1999: The behaviour of a conductivity probe in electrolytic liquids/solid suspensions. Meas. Sci. Technol., 10 , 100105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K. C., 1987: Analysis of bed-load motion at high shear stress. J. Hydraul. Div., 113 , 97103.

  • Yu, Z., Niemeyer H. D. , and Bakker W. T. , 1990: Site investigation on sand concentration in the sheet flow layer. Proc. 22nd Int. Conf. on Coastal Engineering, Delft, Netherlands, ASCE, 2360–2371.

    • Search Google Scholar
    • Export Citation
  • Zedler, E. A., and Street R. L. , 2002: Nearshore sediment transport: Unearthed by large eddy simulation. Proc. 28th Int. Conf. on Coastal Engineering, Cardiff, United Kingdom, ASCE, 2504–2516.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 324 147 8
PDF Downloads 188 62 1

A Conductivity Sensor for Nearbed Sediment Concentration Profiling

Jack A. PuleoCenter for Applied Coastal Research, University of Delaware, Newark, Delaware

Search for other papers by Jack A. Puleo in
Current site
Google Scholar
PubMed
Close
,
Joe FariesCenter for Applied Coastal Research, University of Delaware, Newark, Delaware

Search for other papers by Joe Faries in
Current site
Google Scholar
PubMed
Close
,
Michael DavidsonUniversity of Delaware, Newark, Delaware

Search for other papers by Michael Davidson in
Current site
Google Scholar
PubMed
Close
, and
Betsy HicksCenter for Applied Coastal Research, University of Delaware, Newark, Delaware

Search for other papers by Betsy Hicks in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new sensor that measures the vertical profile of nearbed sediment concentration is described. The conductivity-based sensor is composed of eight electrode pairs separated in the vertical by 2.5 × 10−3 m. Electrode pairs are sampled at 16 Hz, with higher rates achievable. Each electrode pair response is linear over the range of conductivity tested from 0.2 to 0.65 mS cm−1 that exceeds the range of conductivity values corresponding to sediment–water mixtures from clear water to the packed bed limit of 0.65 m3 m−3. A laboratory test over a planar sloping beach indicates the capability of the sensor to simultaneously quantify sediment concentration profiles from roughly 0.01 m below to 0.1 m above the at-rest bed. The data indicate that the upper few millimeters of the bed are highly mobile and that bed dilation and sediment mobility vary considerably over a swash cycle.

Corresponding author address: Jack A. Puleo, Center for Applied Coastal Research, University of Delaware, Ocean Engineering Building, Newark, DE 19716. Email: jpuleo@udel.edu

Abstract

A new sensor that measures the vertical profile of nearbed sediment concentration is described. The conductivity-based sensor is composed of eight electrode pairs separated in the vertical by 2.5 × 10−3 m. Electrode pairs are sampled at 16 Hz, with higher rates achievable. Each electrode pair response is linear over the range of conductivity tested from 0.2 to 0.65 mS cm−1 that exceeds the range of conductivity values corresponding to sediment–water mixtures from clear water to the packed bed limit of 0.65 m3 m−3. A laboratory test over a planar sloping beach indicates the capability of the sensor to simultaneously quantify sediment concentration profiles from roughly 0.01 m below to 0.1 m above the at-rest bed. The data indicate that the upper few millimeters of the bed are highly mobile and that bed dilation and sediment mobility vary considerably over a swash cycle.

Corresponding author address: Jack A. Puleo, Center for Applied Coastal Research, University of Delaware, Ocean Engineering Building, Newark, DE 19716. Email: jpuleo@udel.edu

Save