Calculating Reynolds Stresses from ADCP Measurements in the Presence of Surface Gravity Waves Using the Cospectra-Fit Method

Anthony R. Kirincich Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Anthony R. Kirincich in
Current site
Google Scholar
PubMed
Close
,
Steven J. Lentz Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Steven J. Lentz in
Current site
Google Scholar
PubMed
Close
, and
Gregory P. Gerbi Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Gregory P. Gerbi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recently, the velocity observations of acoustic Doppler current profilers (ADCPs) have been successfully used to estimate turbulent Reynolds stresses in estuaries and tidal channels. However, the presence of surface gravity waves can significantly bias stress estimates, limiting application of the technique in the coastal ocean. This work describes a new approach to estimate Reynolds stresses from ADCP velocities obtained in the presence of waves. The method fits an established semiempirical model of boundary layer turbulence to the measured turbulent cospectra at frequencies below those of surface gravity waves to estimate the stress. Applied to ADCP observations made in weakly stratified waters and variable significant wave heights, estimated near-bottom and near-surface stresses using this method compared well with independent estimates of the boundary stresses in contrast to previous methods. Additionally, the vertical structure of tidal stress estimated using the new approach matched that inferred from a linear momentum balance at stress levels below the estimated stress uncertainties. Because the method makes an estimate of the horizontal turbulent length scales present as part of the model fit, these results can also enable a direct correction for the mean bias errors resulting from instrument tilt, if these scales are long relative to the beam separation.

Corresponding author address: Anthony R. Kirincich, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543. Email: akirincich@whoi.edu

Abstract

Recently, the velocity observations of acoustic Doppler current profilers (ADCPs) have been successfully used to estimate turbulent Reynolds stresses in estuaries and tidal channels. However, the presence of surface gravity waves can significantly bias stress estimates, limiting application of the technique in the coastal ocean. This work describes a new approach to estimate Reynolds stresses from ADCP velocities obtained in the presence of waves. The method fits an established semiempirical model of boundary layer turbulence to the measured turbulent cospectra at frequencies below those of surface gravity waves to estimate the stress. Applied to ADCP observations made in weakly stratified waters and variable significant wave heights, estimated near-bottom and near-surface stresses using this method compared well with independent estimates of the boundary stresses in contrast to previous methods. Additionally, the vertical structure of tidal stress estimated using the new approach matched that inferred from a linear momentum balance at stress levels below the estimated stress uncertainties. Because the method makes an estimate of the horizontal turbulent length scales present as part of the model fit, these results can also enable a direct correction for the mean bias errors resulting from instrument tilt, if these scales are long relative to the beam separation.

Corresponding author address: Anthony R. Kirincich, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543. Email: akirincich@whoi.edu

Save
  • Chelton, D., 1983: Effects of sampling errors in statistical estimation. Deep-Sea Res., 30 , 10831101.

  • Dillon, T., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87 , 96019613.

  • Feddersen, F., and Williams A. , 2007: Direct estimation of the Reynolds stress vertical structure in the nearshore. J. Atmos. Oceanic Technol., 24 , 102116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvine, R., 2004: The vertical structure and subtidal dynamics of the inner shelf off New Jersey. J. Mar. Res., 62 , 337371.

  • Gerbi, G., Trowbridge J. , Edson J. , Plueddemann A. , Terray E. , and Fredericks J. , 2008: Measurements of momentum and heat transfer across the air–sea interface. J. Phys. Oceanogr., 38 , 10541072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gross, T., and Nowell A. , 1982: Mean flow and turbulence scaling in a tidal boundary layer. Cont. Shelf Res., 2 , (2–3). 109126.

  • Kaimel, J. C., Wyngaard J. C. , Izumi Y. , and Coté O. , 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98 , 563589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and Pond S. , 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11 , 324336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S., 1994: Current dynamics over the northern California inner shelf. J. Phys. Oceanogr., 24 , 24612478.

  • Lohrmann, A., Hackett B. , and Roed L. , 1990: High-resolution measurements of turbulence, velocity, and stress using a pulse-to-pulse coherent sonar. J. Atmos. Oceanic Technol., 7 , 1937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., and Lueck R. , 1999: Using a broadband ADCP in a tidal channel. Part II: Turbulence. J. Atmos. Oceanic Technol., 16 , 15681579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumley, J., and Terray E. , 1983: Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr., 13 , 20002007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munchow, A., and Chant R. , 2000: Kinematics of inner shelf motions during the summer stratified season off New Jersey. J. Phys. Oceanogr., 30 , 247268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nidzieko, N., Fong D. , and Hench J. , 2006: Comparison of Reynolds stress estimates derived from standard and fast-ping ADCPs. J. Atmos. Oceanic Technol., 23 , 854861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., Beardsley B. , and Lentz S. , 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28 , 929937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rippeth, T., Williams E. , and Simpson J. , 2002: Reynolds stress and turbulent energy production in a tidal channel. J. Phys. Oceanogr., 32 , 12421251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rippeth, T., Simpson J. , and Williams E. , 2003: Measurement of the rates of production and dissipation of turbulent kinetic energy in an energetic tidal flow: Red Wharf Bay revisited. J. Phys. Oceanogr., 33 , 18891901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosman, J., Hench J. , Koseff J. , and Monismith S. , 2008: Extracting Reynolds stresses from acoustic Doppler current profiler measurements in wave-dominated environments. J. Atmos. Oceanic Technol., 25 , 286306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, W., and Trowbridge J. , 2001: The direct estimation of near-bottom turbulent fluxes in the presence of energetic wave motions. J. Atmos. Oceanic Technol., 18 , 15401557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stacey, M., Monismith S. , and Burau J. , 1999a: Measurements of Reynolds stress profiles in unstratified tidal flow. J. Geophys. Res., 104 , (C5). 1093310949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stacey, M., Monismith S. , and Burau J. , 1999b: Observations of turbulence in a partially stratified estuary. J. Phys. Oceanogr., 29 , 19501970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trowbridge, J., 1998: On a technique for measurement of turbulent shear stress in the presence of surface waves. J. Atmos. Oceanic Technol., 15 , 290298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trowbridge, J., and Elgar S. , 2001: Turbulence measurements in the surf zone. J. Phys. Oceanogr., 31 , 24032417.

  • Trowbridge, J., and Elgar S. , 2003: Spatial scales of stress-carrying nearshore turbulence. J. Phys. Oceanogr., 33 , 11221128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J., Sherwood C. , Arango H. , and Signell R. , 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8 , 81113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whipple, A. C., Luettich R. A. Jr., and Seim H. E. , 2006: Measurements of Reynolds stress in a wind-driven lagoonal estuary. Ocean Dyn., 21 , 169185. doi:10.1007/s10236-005-0038-x.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Simpson J. , 2004: Uncertainties in estimates of Reynolds stress and TKE production rate using the ADCP variance method. J. Atmos. Oceanic Technol., 21 , 347357.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 716 219 62
PDF Downloads 459 129 1