Lidar Scanning of Momentum Flux in and above the Atmospheric Surface Layer

J. Mann Wind Energy Division, Risø DTU, Roskilde, Denmark

Search for other papers by J. Mann in
Current site
Google Scholar
PubMed
Close
,
A. Peña Wind Energy Division, Risø DTU, Roskilde, and Department of Geography and Geology, University of Copenhagen, Copenhagen, Denmark

Search for other papers by A. Peña in
Current site
Google Scholar
PubMed
Close
,
F. Bingöl Wind Energy Division, Risø DTU, Roskilde, Denmark

Search for other papers by F. Bingöl in
Current site
Google Scholar
PubMed
Close
,
R. Wagner Wind Energy Division, Risø DTU, Roskilde, Denmark

Search for other papers by R. Wagner in
Current site
Google Scholar
PubMed
Close
, and
M. S. Courtney Wind Energy Division, Risø DTU, Roskilde, Denmark

Search for other papers by M. S. Courtney in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Methods to measure the vertical flux of horizontal momentum using both continuous wave and pulsed Doppler lidar profilers are evaluated. The lidar measurements are compared to momentum flux observations performed with sonic anemometers over flat terrain at Høvsøre, Denmark, and profile-derived vertical momentum flux observations at the Horns Rev wind farm in the North Sea. Generally, the momentum fluxes are reduced because of the finite measuring volume of the instruments, and the filtering is crudely accounted for theoretically. The essential parameter for the estimation of the reduction is the ratio of the turbulence scale to the size of the measuring volume. For the continuous wave lidar the reduction can largely be compensated by averaging Doppler spectra instead of radial velocities.

Corresponding author address: Jakob Mann, Wind Energy Division, Risø DTU, Frederiksborgvej 399, 4000 Roskilde, Denmark. Email: jakob.mann@risoe.dk

Abstract

Methods to measure the vertical flux of horizontal momentum using both continuous wave and pulsed Doppler lidar profilers are evaluated. The lidar measurements are compared to momentum flux observations performed with sonic anemometers over flat terrain at Høvsøre, Denmark, and profile-derived vertical momentum flux observations at the Horns Rev wind farm in the North Sea. Generally, the momentum fluxes are reduced because of the finite measuring volume of the instruments, and the filtering is crudely accounted for theoretically. The essential parameter for the estimation of the reduction is the ratio of the turbulence scale to the size of the measuring volume. For the continuous wave lidar the reduction can largely be compensated by averaging Doppler spectra instead of radial velocities.

Corresponding author address: Jakob Mann, Wind Energy Division, Risø DTU, Frederiksborgvej 399, 4000 Roskilde, Denmark. Email: jakob.mann@risoe.dk

Save
  • Banakh, V. A., and Werner C. , 2005: Computer simulation of coherent Doppler lidar measurement of wind velocity and retrieval of turbulent wind statistics. Opt. Eng., 44 , 071205. doi:10.1117/1.1955167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Pichugina Y. L. , and Brewer W. A. , 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63 , 27002719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingöl, F., Mann J. , and Foussekis D. , 2009: Conically scanning lidar error in complex terrain. Meteor. Z., 18 , 189195.

  • Bingöl, F., Mann J. , and Larsen G. , 2010: Light detection and ranging measurements of wake dynamics part I: One dimensional scanning. Wind Energy, 13 , 5161. doi:10.1002/we.352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, S., 2008: Wind speed errors for lidars and sodars in complex terrain. IOP Conf. Ser.: Earth Environ. Sci., 1 , 012061. doi:10.1088/1755-1315/1/1/012061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81 , 639640.

  • Courtney, M., Wagner R. , and Lindelöw P. , 2008: Testing and comparison of lidars for profile and turbulence measurements in wind energy. IOP Conf. Ser.: Earth Environ. Sci., 1 , 012021. doi:10.1088/1755-1315/1/1/012021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eberhard, W. L., Cupp R. E. , and Healy K. R. , 1989: Doppler lidar measurement of profiles of turbulence and momentum flux. J. Atmos. Oceanic Technol., 6 , 809819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emeis, S., Harris M. , and Banta R. M. , 2007: Boundary-layer anemometry by optical remote sensing for Wind energy applications. Meteor. Z., 16 , 337347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engelbart, D. A. M., Kallistratova M. , and Kouznetsov R. , 2007: Determination of the turbulent fluxes of heat and momentum in the ABL by ground-based remote sensing techniques (a review). Meteor. Z., 16 , 325335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., Martner B. E. , and Gibson J. S. , 1989: Measurement of the vertical flux of turbulent kinetic energy with a single Doppler radar. Bound.-Layer Meteor., 49 , 331337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., Xu M. , and Eberhard W. L. , 1992: Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data. J. Geophys. Res., 97 , 1840918423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, M., Hand M. , and Wright A. , 2006: Lidar for turbine control. National Renewable Energy Laboratory Tech. Rep. NREL/TP-500-39154, 55 pp.

    • Search Google Scholar
    • Export Citation
  • Harris, M., Bryce D. J. , Coffey A. S. , Smith D. A. , Birkemeyer J. , and Knopf U. , 2007: Advance measurement of gusts by laser anemometry. J. Wind Eng. Ind. Aerodyn., 95 , 16371647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Electrotechnical Commission, 2005: Wind turbine—Part 1: Design requirements. 3rd ed. IEC Rep. 61400-1, 85 pp.

  • Kaimal, J. C., Wyngaard J. C. , Izumi Y. , and Coté O. R. , 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98 , 563589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kameyama, S., Ando T. , Asaka K. , Hirano Y. , and Wadaka S. , 2007: Compact all-fiber pulsed coherent doppler lidar system for wind sensing. Appl. Opt., 46 , 19531962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kindler, D., Oldroyd A. , Macaskill A. , and Finch D. , 2007: An eight month test campaign of the QinetiQ ZephIR system: Preliminary results. Meteor. Z., 16 , 479489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., Mann J. , and Kristensen L. , 1994: How long is long enough when measuring fluxes and other turbulence statistics? J. Atmos. Oceanic Technol., 11 , 661673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindelöw, P., 2007: Fiber-based coherent lidars for remote wind sensing. Ph.D. thesis, Danish Technical University, 164 pp.

  • Lothon, M., Lenschow D. H. , and Mayor S. D. , 2006: Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Bound.-Layer Meteor., 121 , 521536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, J., 1994: The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech., 273 , 141168.

  • Mann, J., 1998: Wind field simulation. Prob. Eng. Mech., 13 , 269282.

  • Mann, J., and Coauthors, 2009: Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer. Meteor. Z., 18 , 135140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña, A., and Gryning S-E. , 2008: Charnock’s roughness length model and non-dimensional wind profiles over the sea. Bound.-Layer Meteor., 128 , 191203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña, A., Gryning S-E. , and Hasager C. B. , 2008: Measurements and modelling of the wind speed profile in the marine atmospheric boundary layer. Bound.-Layer Meteor., 129 , 479495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña, A., Hasager C. B. , Gryning S-E. , Courtney M. , Antoniou I. , and Mikkelsen T. , 2009: Offshore wind profiling using light detection and ranging measurements. Wind Energy, 12 , 105124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña, A., Gryning S-E. , Mann J. , and Hasager C. B. , 2010: Length scales of the neutral wind profile over homogeneous terrain. J. Appl. Meteor. Climatol., 49 , 792806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., Banta R. M. , Kelley N. D. , Jonkman B. J. , Tucker S. C. , Newsom R. K. , and Brewer W. A. , 2008: Horizontal velocity and variance measurements in the stable boundary layer using doppler lidar: Sensitivity to averaging procedures. J. Atmos. Oceanic Technol., 25 , 13071327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

  • Smith, D. A., Harris M. , Coffey A. S. , Mikkelsen T. , Jørgensen H. E. , Mann J. , and Danielian R. , 2006: Wind lidar evaluation at the Danish wind test site Høvsøre. Wind Energy, 9 , 8793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sonnenschein, C. M., and Horrigan F. A. , 1971: Signal-to-noise relationships for coaxial systems that heterodyne backscatter from atmosphere. Appl. Opt., 10 , 16001604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Trujillo, J. J., Bingöl F. , Larsen G. , Mann J. , and Kuehn M. , 2010: Lidar measurements of wake dynamics. Part II: Two dimensional scanning. Wind Energy, in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 981 201 11
PDF Downloads 643 137 3