A Model-Based Observation-Thinning Scheme for the Assimilation of High-Resolution SST in the Shelf and Coastal Seas around China

Xichen Li Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xichen Li in
Current site
Google Scholar
PubMed
Close
,
Jiang Zhu Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jiang Zhu in
Current site
Google Scholar
PubMed
Close
,
Yiguo Xiao Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yiguo Xiao in
Current site
Google Scholar
PubMed
Close
, and
Ruiwen Wang Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Ruiwen Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The use of high-density remote sensing buoys and ship-based observations play an increasingly crucial role in the operational assimilation and forecast of oceans. With the recent release of several high-resolution observation datasets, such as the Global Ocean Data Assimilation Experiment (GODAE) high-resolution SST (GHRSST) datasets, the development of observation-thinning schemes becomes important in the process of data assimilation because the huge quantity and dense spatial–temporal distributions of these datasets might make it expensive to assimilate the full dataset into ocean models or even decay the assimilation result. In this paper, an objective model simulation ensemble-based observation-thinning scheme is proposed and applied to a Chinese shelf–coastal seas eddy-resolving model. A successful thinning scheme should select a subset of observations yielding a small analysis error variance (AEV) while keeping the number of observations to as few as possible. In this study, the background error covariance (BEC) is estimated using the historical ensemble and then the subset of observations to minimize the AEV is selected, which is estimated from the Kalman theory. The authors used this method in the GHRSST product to cover the shelf and coastal seas around China and then verified the result with an estimation function and assimilation–forecast systems.

Corresponding author address: Jiang Zhu, ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 100029. Email: jzhu@mail.iap.ac.cn

Abstract

The use of high-density remote sensing buoys and ship-based observations play an increasingly crucial role in the operational assimilation and forecast of oceans. With the recent release of several high-resolution observation datasets, such as the Global Ocean Data Assimilation Experiment (GODAE) high-resolution SST (GHRSST) datasets, the development of observation-thinning schemes becomes important in the process of data assimilation because the huge quantity and dense spatial–temporal distributions of these datasets might make it expensive to assimilate the full dataset into ocean models or even decay the assimilation result. In this paper, an objective model simulation ensemble-based observation-thinning scheme is proposed and applied to a Chinese shelf–coastal seas eddy-resolving model. A successful thinning scheme should select a subset of observations yielding a small analysis error variance (AEV) while keeping the number of observations to as few as possible. In this study, the background error covariance (BEC) is estimated using the historical ensemble and then the subset of observations to minimize the AEV is selected, which is estimated from the Kalman theory. The authors used this method in the GHRSST product to cover the shelf and coastal seas around China and then verified the result with an estimation function and assimilation–forecast systems.

Corresponding author address: Jiang Zhu, ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 100029. Email: jzhu@mail.iap.ac.cn

Save
  • Bishop, C. H., Etherton B. J. , and Majumdar S. J. , 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129 , 420436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4 , 5588.

  • Boyer, T. P., Stephens C. , Antonov J. I. , Conkright M. E. , Locarnini R. A. , O’Brien T. D. , and Garcia H. E. , 2002: Salinity. Vol. 2, World Ocean Atlas 2001, S. Levitus, Ed., NOAA Atlas NESDIS 50, 165 pp.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., Smith L. T. , Halliwell G. R. , and Bleck R. , 2003: North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr., 33 , 25042526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., Hurlburt H. E. , Smedstad O. M. , Halliwell G. R. , Hogan P. J. , Wallcraft A. J. , Baraille R. , and Bleck R. , 2007: The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst., 65 , 6083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., Ma B. , and Chen Y. , 2002: The South China Sea thermohaline structure and circulation. Acta Oceanol. Sin., 21 , 227261.

  • Donlon, C. J., 2003: Proceedings from the Third GODAE High-Resolution SST Pilot Project Workshop. International GHRSST-PP Project Office, 141 pp.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., Minnett P. J. , Gentemann C. L. , Nightingale T. J. , Barton I. J. , Ward B. , and Murray M. J. , 2002: Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15 , 353369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., and Coauthors, 2004: The recommended GHRSST-PP data processing specification gDS (version 1 revision 1.5). GHRSST-PP International Project Office, Met Office, 241 pp. [Available online at http://www.ghrsst-pp.org].

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., and Coauthors, 2007: The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Amer. Meteor. Soc., 88 , 11971213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, J. P., Li H. , Curchitser E. N. , and Haidvogel D. B. , 2006: Modeling South China Sea circulation: Response to seasonal forcing regimes. J. Geophys. Res., 111 , C06034. doi:10.1029/2005JC003298.

    • Search Google Scholar
    • Export Citation
  • Khare, S. P., and Anderson J. L. , 2006: An examination of ensemble filters-based adaptive observation methodologies. Tellus, 58A , 179195.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., 2005: Issues in targeted observations. Quart. J. Roy. Meteor. Soc., 131 , 34093425.

  • Levitus, S., and Boyer T. P. , 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., Burgett R. , and Boyer T. P. , 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Liu, Z-Q., and Rabier F. , 2002: The interaction between model resolution, observation resolution, and observation density in data assimilation: A one-dimensional study. Quart. J. Roy. Meteor. Soc., 128 , 13671386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochotta, T., Gebhardt C. , Saupe D. , and Wergen W. , 2005: Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods. Quart. J. Roy. Meteor. Soc., 131 , 34273437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochotta, T., Gebhardt C. , Bondarenko V. , Saupe D. , and Wergen W. , 2007: On thinning methods for data assimilation of satellite observations. Preprints, 23rd Int. Conf. on Interactive Information Processing Systems (IIPS), San Antonio, TX, Amer. Meteor. Soc., 2B.3. [Available online at http://ams.confex.com/ams/87ANNUAL/techprogram/paper_118511.htm].

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., and Sakov P. , 2008: Representation error of oceanic observations for data assimilation. J. Atmos. Oceanic Technol., 25 , 10041017.

  • Oke, P. R., Brassington G. B. , Griffin D. A. , and Schiller A. , 2008: The Bluelink ocean data assimilation system (BODAS). Ocean Modell., 21 , 4670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., Mitsudera H. , and Yamagata T. , 2000: Intrusion of the North Pacific waters into the South China Sea. J. Geophys. Res., 105 , 64156424.

  • Sakov, P., and Oke P. R. , 2008: Objective array design: Application to the tropical Indian Ocean. J. Atmos. Oceanic Technol., 25 , 794807.

  • Sakov, P., Evensen G. , and Bertino L. , 2009: Asynchronous data assimilation with the EnKF. Tellus, 62A , 2429.

  • Testut, C., Brasseur P. , Brankart J. , and Verron J. , 2003: Assimilation of sea surface temperature and altimetric observations during 1992–1993 into an eddy permitting primitive equation model of the North Atlantic Ocean. J. Mar. Syst., 40–41 , 291316.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., Anderson J. L. , Bishop C. H. , Hamill T. M. , and Whitaker J. S. , 2003: Ensemble square root filters. Mon. Wea. Rev., 131 , 14851490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Xie, J. P., Zhu J. , and Yan L. , 2008: Assessment and intercomparison of five high-resolution sea surface temperature products in the shelf and coastal seas around China. Cont. Shelf Res., 28 , 12861293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., 2007: Measuring information content from observations for data assimilation: Relative entropy versus Shannon entropy difference. Tellus, 59A , 198209.

    • Search Google Scholar
    • Export Citation
  • Yan, C. X., Zhu J. , and Zhou G. Q. , 2007: Impacts of XBT, TAO, altimetry, and ARGO observations on the tropic Pacific Ocean data assimilation. Adv. Atmos. Sci., 24 , 383398.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 805 558 170
PDF Downloads 240 58 8