An Improved Method for Estimating the Wind Power Density Distribution Function

Mark L. Morrissey School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Mark L. Morrissey in
Current site
Google Scholar
PubMed
Close
,
Werner E. Cook School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Werner E. Cook in
Current site
Google Scholar
PubMed
Close
, and
J. Scott Greene Department of Geography, University of Oklahoma, and Oklahoma Wind Power Initiative, Norman, Oklahoma

Search for other papers by J. Scott Greene in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The wind power density (WPD) distribution curve is essential for wind power assessment and wind turbine engineering. The usual practice of estimating this curve from wind speed data is to first estimate the wind speed probability density function (PDF) using a nonparametric or parametric method. The density function is then multiplied by one-half the wind speed cubed times the air density. Unfortunately, this means that minor errors in the estimation of the wind speed PDF can result in large errors in the WPD distribution curve because the cubic term in the WPD function magnifies the error. To avoid this problem, this paper presents a new method of estimating the WPD distribution curve through a direct estimation of the curve using a Gauss–Hermite expansion. It is demonstrated that the proposed method provides a much more reliable estimate of the WPD distribution curve.

Corresponding author address: Mark L. Morrissey, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072. Email: mmorriss@ou.edu

Abstract

The wind power density (WPD) distribution curve is essential for wind power assessment and wind turbine engineering. The usual practice of estimating this curve from wind speed data is to first estimate the wind speed probability density function (PDF) using a nonparametric or parametric method. The density function is then multiplied by one-half the wind speed cubed times the air density. Unfortunately, this means that minor errors in the estimation of the wind speed PDF can result in large errors in the WPD distribution curve because the cubic term in the WPD function magnifies the error. To avoid this problem, this paper presents a new method of estimating the WPD distribution curve through a direct estimation of the curve using a Gauss–Hermite expansion. It is demonstrated that the proposed method provides a much more reliable estimate of the WPD distribution curve.

Corresponding author address: Mark L. Morrissey, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072. Email: mmorriss@ou.edu

Save
  • Blinnikov, S., and Moessner R. , 1998: Expansion for nearly Gaussian distributions. Astron. Astrophys., 130 , (Suppl.). 193205.

  • Brock, F. V., Crawford K. C. , Elliott R. L. , Cuperus G. W. , Stadler S. J. , Johnson H. L. , and Eilts M. D. , 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12 , 519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryukhan, F. F., and Diab R. D. , 1993: Decomposition of empirical wind speed distributions by Laguerre polynomials. Wind Eng., 17 , 147151.

    • Search Google Scholar
    • Export Citation
  • Çelik, A. N., 2003a: Assessing the suitability of wind speed probability distribution functions based on wind power density. Renewable Energy, 28 , 15631574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Çelik, A. N., 2003b: A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renewable Energy, 29 , 593604.

    • Search Google Scholar
    • Export Citation
  • Cencov, N. N., 1962: Estimation of an unknown distribution density from observations. Soviet Math. Dokl., 3 , 15591562.

  • Efromovich, S., 1999: Nonparametric Curve Estimation, Methods, Theory and Applications. Springer-Verlag, 411 pp.

  • Hall, P., 1980: Estimating a density of the positive half line by the method of orthogonal series. Ann. Inst. Stat. Math., 32 , 351362.

  • Hennessey, J. O., 1977: Some aspects of wind power statistics. J. Appl. Meteor., 16 , 119128.

  • Izenman, A. J., 1991: Recent developments in nonparametric density estimation. J. Amer. Stat. Assoc., 86 , 205224.

  • Jaramillo, O. A., and Borja M. A. , 2004: Wind speed analysis in La Ventosa, Mexico: A bimodal probability distribution case. Renewable Energy, 29 , 16131630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juban, J., Siebert N. , and Kariniotakis G. , 2007: Probabilistic short-term wind power forecasting for the optimal management of wind generation. Proc. IEEE PowerTech 2007 Conf., Lausanne, Switzerland, Institute of Electrical and Electronics Engineers, 683–688.

    • Search Google Scholar
    • Export Citation
  • Justus, C. G., Hargraves W. R. , Mikhail A. , and Graber D. , 1978: Methods for estimating wind speed frequency distributions. J. Appl. Meteor., 17 , 350353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kronmal, R., and Tarter M. , 1968: The estimation of probability densities and cumulatives by Fourier series methods. J. Amer. Stat. Assoc., 63 , 925952.

    • Search Google Scholar
    • Export Citation
  • Li, M., and Li X. , 2005: MEP-type distribution function: A better alternative to Weibull function for wind speed distributions. Renewable Energy, 30 , 12211240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebscher, E., 1990: Hermite series estimators for probability densities. Metrika, 37 , 321343.

  • Monahan, A. H., 2006: The probability distribution of sea surface wind speeds. Part II: Dataset intercomparison and seasonal variability. J. Climate, 19 , 521534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavia, E. G., and O’Brien J. J. , 1986: Weibull statistics of wind speed over the ocean. J. Climate Appl. Meteor., 25 , 13241332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramirez, P., and Carta J. A. , 2005: Influence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: A case study. Energy Convers. Manage., 46 , 24192438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, S. C., 1967: Estimation of a probability density by an orthogonal series. Ann. Math. Stat., 38 , 12621265.

  • Silverman, B. W., 1986: Density Estimation. Chapman and Hall, 175 pp.

  • Stevens, M. J. M., and Smulders P. T. , 1979: The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes. Wind Eng., 3 , 132145.

    • Search Google Scholar
    • Export Citation
  • van der Marel, R. P., and Franx M. , 1993: A new method for the identification of non-Gaussian line profiles in elliptical galaxies. Astrophys. J., 407 , 525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, G. G., 1977: Properties of Hermite series estimation of probability density. Ann. Stat., 5 , 12581264.

  • Watson, G. S., 1969: Density estimation by orthogonal series. Ann. Math. Stat., 38 , 12621265.

  • Yilmaz, V., and Çelik H. E. , 2008: A statistical approach to estimate the wind speed distribution: The case of the Gelibolu region. Doğuş Üniversitesi Derg., 9 , 122132.

    • Search Google Scholar
    • Export Citation
  • Zaharim, A., Razali A. M. , Abidin R. Z. , and Sopian K. , 2009: Fitting of statistical distributions to wind speed data in Malaysia. European J. Sci. Res., 26 , 612.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 278 98 10
PDF Downloads 182 48 5