Radiance Comparisons of MODIS and AIRS Using Spatial Response Information

M. M. Schreier Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles,and Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by M. M. Schreier in
Current site
Google Scholar
PubMed
Close
,
B. H. Kahn Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by B. H. Kahn in
Current site
Google Scholar
PubMed
Close
,
A. Eldering Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by A. Eldering in
Current site
Google Scholar
PubMed
Close
,
D. A. Elliott Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by D. A. Elliott in
Current site
Google Scholar
PubMed
Close
,
E. Fishbein Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by E. Fishbein in
Current site
Google Scholar
PubMed
Close
,
F. W. Irion Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by F. W. Irion in
Current site
Google Scholar
PubMed
Close
, and
T. S. Pagano Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by T. S. Pagano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The combination of multiple satellite instruments on a pixel-by-pixel basis is a difficult task, even for instruments collocated in space and time, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) on board the Earth Observing System (EOS) Aqua. Toward the goal of an improved collocation methodology, the channel- and scan angle–dependent spatial response functions of AIRS that were obtained from prelaunch measurements and calculated impacts from scan geometry are shown within the context of radiance comparisons. The AIRS spatial response functions are used to improve the averaging of MODIS radiances to the AIRS footprint, and the variability of brightness temperature differences (ΔTb) between MODIS and AIRS are quantified on a channel-by-channel basis. To test possible connections between ΔTb and the derived level 2 (L2) datasets, cloud characteristics derived from MODIS are used to highlight correlations between these quantities and ΔTb, especially for ice clouds in H2O and CO2 bands. Furthermore, correlations are quantified for temperature lapse rate (dT/dp) and the magnitude of water vapor mixing ratio (q) obtained from AIRS L2 retrievals. Larger values of dT/dp and q correlate well to larger values of ΔTb in the H2O and CO2 bands. These correlations were largely eliminated or reduced after the MODIS spectral response functions were shifted by recommended values. While this investigation shows that the AIRS spatial response functions are necessary to reduce the variability and skewness of ΔTb within heterogeneous scenes, improved knowledge about MODIS spectral response functions is necessary to reduce biases in ΔTb.

Corresponding author address: Dr. Mathias M. Schreier, Jet Propulsion Laboratory, Mail Stop 169–237, 4800 Oak Grove Drive, Pasadena, CA 91109. Email: mathias.schreier@jpl.nasa.gov

Abstract

The combination of multiple satellite instruments on a pixel-by-pixel basis is a difficult task, even for instruments collocated in space and time, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) on board the Earth Observing System (EOS) Aqua. Toward the goal of an improved collocation methodology, the channel- and scan angle–dependent spatial response functions of AIRS that were obtained from prelaunch measurements and calculated impacts from scan geometry are shown within the context of radiance comparisons. The AIRS spatial response functions are used to improve the averaging of MODIS radiances to the AIRS footprint, and the variability of brightness temperature differences (ΔTb) between MODIS and AIRS are quantified on a channel-by-channel basis. To test possible connections between ΔTb and the derived level 2 (L2) datasets, cloud characteristics derived from MODIS are used to highlight correlations between these quantities and ΔTb, especially for ice clouds in H2O and CO2 bands. Furthermore, correlations are quantified for temperature lapse rate (dT/dp) and the magnitude of water vapor mixing ratio (q) obtained from AIRS L2 retrievals. Larger values of dT/dp and q correlate well to larger values of ΔTb in the H2O and CO2 bands. These correlations were largely eliminated or reduced after the MODIS spectral response functions were shifted by recommended values. While this investigation shows that the AIRS spatial response functions are necessary to reduce the variability and skewness of ΔTb within heterogeneous scenes, improved knowledge about MODIS spectral response functions is necessary to reduce biases in ΔTb.

Corresponding author address: Dr. Mathias M. Schreier, Jet Propulsion Laboratory, Mail Stop 169–237, 4800 Oak Grove Drive, Pasadena, CA 91109. Email: mathias.schreier@jpl.nasa.gov

Save
  • Ackerman, S. A., Strabala K. I. , Menzel W. P. , Frey R. A. , Moeller C. C. , and Gumley L. E. , 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103 , 3214132157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., Holz R. E. , Frey R. , Eloranta E. W. , Maddux B. C. , and McGill M. , 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25 , 10731086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41 , 253264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, A. J., and Francis P. N. , 2004: On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements. Quart. J. Roy. Meteor. Soc., 130 , 763778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, W. L., Pagano T. S. , and Salomonson V. V. , 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36 , 10881100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87 , 911926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cracknell, A. P., 1998: Synergy in remote sensing—What’s in a pixel? Int. J. Remote Sens., 19 , 20252047.

  • Elliott, D. A., Pagano T. S. , and Aumann H. H. , 2006: The impact of the AIRS spatial response on channel-to-channel and multi-instrument data analyses. Earth Observing Systems XI, J. J. Butler, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 6296), doi:10.117/12.679542.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., Ackerman S. A. , Liu Y. , Strabala K. I. , Zhang H. , Key J. R. , and Wang X. , 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for Collection 5. J. Atmos. Oceanic Technol., 25 , 10571072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, B-C., and Kaufman Y. J. , 1995: Selection of the 1.375-μm MODIS channel for remote sensing of cirrus clouds and stratospheric aerosols from space. J. Atmos. Sci., 52 , 42314237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunshor, M. M., Schmit T. J. , Menzel W. P. , and Tobin D. C. , 2009: Intercalibration of broadband geostationary imagers using AIRS. J. Atmos. Oceanic Technol., 26 , 746758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., Fishbein E. , Nasiri S. L. , Eldering A. , Fetzer E. J. , Garay M. J. , and Lee S-Y. , 2007: The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievals. J. Geophys. Res., 112 , D09201. doi:10.1029/2006JD007486.

    • Search Google Scholar
    • Export Citation
  • Lambrigtsen, B. H., and Lee S-Y. , 2003: Coalignment and synchronization of the AIRS instrument suite. IEEE Trans. Geosci. Remote Sens., 41 , 343351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., Gabriel P. , Leesman K. , Cooper S. J. , and Stephens G. L. , 2006: Objective assessment of the information content of visible and infrared radiance measurements for cloud microphysical property retrievals over the global oceans. Part I: Liquid clouds. J. Appl. Meteor. Climatol., 45 , 2041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Menzel W. P. , Sun F. , Schmit T. J. , and Gurka J. , 2004a: AIRS subpixel cloud characterization using MODIS cloud products. J. Appl. Meteor., 43 , 10831094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Menzel W. P. , Zhang W. , Sun F. , Schmit T. J. , Gurka J. J. , and Weisz E. , 2004b: Synergistic use of MODIS and AIRS in a variational retrieval of cloud parameters. J. Appl. Meteor., 43 , 16191634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Liu C. Y. , Huang H. L. , Schmit T. J. , Wu X. B. , Menzel W. P. , and Gurka J. J. , 2005: Optimal cloud-clearing for AIRS radiances using MODIS. IEEE Trans. Geosci. Remote Sens., 43 , 12661278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., Frey R. A. , Baum B. A. , and Zhang H. , 2006: Cloud top properties and cloud phase. Algorithm theoretical basis document, version 7, 55 pp.

    • Search Google Scholar
    • Export Citation
  • Nagle, F. W., and Holz R. E. , 2009: Computationally efficient methods of collocating satellite, aircraft, and ground observations. J. Atmos. Oceanic Technol., 26 , 15851595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overoye, K., Aumann H. H. , Weiler M. H. , Gigioli G. W. , Shaw W. , Frost E. , and McKay T. , 1999: Test and calibration of the AIRS instrument. Infrared Spaceborne Remote Sensing VII, M. Strojnik and B. F. Andresen, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 3759), 254–265.

    • Search Google Scholar
    • Export Citation
  • Pagano, T. S., Chahine M. T. , Aumann H. H. , and Broberg S. E. , 2006: Advanced Remote-sensing Imaging Emission Spectrometer (ARIES): An instrument concept for next-generation imager/sounder. Sensors, Systems, and Next-Generation Satellites XI, R. Meynart et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6744), doi:10.1117/12.738079.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., King M. D. , Ackerman S. A. , Menzel W. P. , Baum B. A. , Riédi J. C. , and Frey R. A. , 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62 , 947973.

  • Seemann, S. W., Li J. , Menzel W. P. , and Gumley L. E. , 2003: Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteor., 42 , 10721091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-train. Bull. Amer. Meteor. Soc., 83 , 17711790.

  • Sun, H., Wolf W. , King T. , Barnet C. , and Goldberg M. , 2006: Co-Location for satellite observations. Preprints, 14th Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., P6.25. [Available online at http://ams.confex.com/ams/pdfpapers/104936.pdf].

    • Search Google Scholar
    • Export Citation
  • Susskind, J., Barnet C. D. , and Blaisdell J. M. , 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41 , 390409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., Revercomb H. E. , Moeller C. C. , and Pagano T. S. , 2006: Use of Atmospheric Infrared Sounder high–spectral resolution spectra to assess the calibration of Moderate resolution Imaging Spectroradiometer on EOS Aqua. J. Geophys. Res., 111 , D09S05. doi:10.1029/2005JD006095.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Wu X. , Li Y. , Goldberg M. , Sohn S. , and Cao C. , 2010: Comparison of AIRS and IASI radiances using GOES imagers as transfer radiometers toward climate data records. J. Appl. Meteor. Climatol., 49 , 478492.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 284 45 2
PDF Downloads 238 26 1