A Balloon Sounding Technique for Measuring SO2 Plumes

Gary A. Morris Department of Physics and Astronomy, Valparaiso University, Valparaiso, Indiana

Search for other papers by Gary A. Morris in
Current site
Google Scholar
PubMed
Close
,
Walter D. Komhyr EnSci Corporation, Boulder, Colorado

Search for other papers by Walter D. Komhyr in
Current site
Google Scholar
PubMed
Close
,
Jun Hirokawa Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan

Search for other papers by Jun Hirokawa in
Current site
Google Scholar
PubMed
Close
,
James Flynn Department of Earth and Atmospheric Science, University of Houston, Houston, Texas

Search for other papers by James Flynn in
Current site
Google Scholar
PubMed
Close
,
Barry Lefer Department of Earth and Atmospheric Science, University of Houston, Houston, Texas

Search for other papers by Barry Lefer in
Current site
Google Scholar
PubMed
Close
,
Nicholay Krotkov GEST Center, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Nicholay Krotkov in
Current site
Google Scholar
PubMed
Close
, and
Fong Ngan * NOAA/Air Resources Laboratory, Silver Spring, Maryland

Search for other papers by Fong Ngan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper reports on the development of a new technique for inexpensive measurements of SO2 profiles using a modified dual-ozonesonde instrument payload. The presence of SO2 interferes with the standard electrochemical cell (ECC) ozonesonde measurement, resulting in −1 molecule of O3 reported for each molecule of SO2 present (provided [O3] > [SO2]). In laboratory tests, an SO2 filter made with CrO3 placed on the inlet side of the sonde removes nearly 100% of the SO2 present for concentrations up to 60 ppbv and remained effective after exposure to 2.8 × 1016 molecules of SO2 [equivalent to a column ∼150 DU (1 DU = 2.69 × 1020 molecules m−2)]. Flying two ECC instruments on the same payload with one filtered and the other unfiltered yields SO2 profiles, inferred by subtraction. Laboratory tests and field experience suggest an SO2 detection limit of ∼3 pbb with profiles valid from the surface to the ozonopause [i.e., ∼(8–10 km)]. Two example profiles demonstrate the success of this technique for both volcanic and industrial plumes.

Corresponding author address: Gary Morris, Dept. of Physics and Astronomy, Valparaiso University, 1610 Campus Dr. East, Valparaiso, IN 46383. Email: gary.morris@valpo.edu

Abstract

This paper reports on the development of a new technique for inexpensive measurements of SO2 profiles using a modified dual-ozonesonde instrument payload. The presence of SO2 interferes with the standard electrochemical cell (ECC) ozonesonde measurement, resulting in −1 molecule of O3 reported for each molecule of SO2 present (provided [O3] > [SO2]). In laboratory tests, an SO2 filter made with CrO3 placed on the inlet side of the sonde removes nearly 100% of the SO2 present for concentrations up to 60 ppbv and remained effective after exposure to 2.8 × 1016 molecules of SO2 [equivalent to a column ∼150 DU (1 DU = 2.69 × 1020 molecules m−2)]. Flying two ECC instruments on the same payload with one filtered and the other unfiltered yields SO2 profiles, inferred by subtraction. Laboratory tests and field experience suggest an SO2 detection limit of ∼3 pbb with profiles valid from the surface to the ozonopause [i.e., ∼(8–10 km)]. Two example profiles demonstrate the success of this technique for both volcanic and industrial plumes.

Corresponding author address: Gary Morris, Dept. of Physics and Astronomy, Valparaiso University, 1610 Campus Dr. East, Valparaiso, IN 46383. Email: gary.morris@valpo.edu

Save
  • Benkovitz, C. M., Schwartz S. E. , Jensen M. P. , Miller M. A. , Easter R. C. , and Bates T. S. , 2004: Modeling atmospheric sulfur over the Northern Hemisphere during the Aerosol Characterization Experiment 2 experimental period. J. Geophys. Res., 109 , D22207. doi:10.1029/2004JD004939.

    • Search Google Scholar
    • Export Citation
  • Bovensmann, H., Burrows J. P. , Buchwitz M. , Frerick J. , Noël S. , Rozanov V. V. , Chance K. V. , and Goede A. P. H. , 1999: SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci., 56 , 127150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bramstedt, K., Richter A. , Van Roozendael M. , and De Smedt I. , 2004: Comparisons of SCIAMACHY sulfur dioxide observations. Proc. Second Workshop on the Atmospheric Chemistry Validation of Envisat (ACVE-2), Frascati, Italy, European Space Agency, ESA SP-562. [Available online at http://envisat.esa.int/workshops/acve2/papers/ESC02KB.pdf].

    • Search Google Scholar
    • Export Citation
  • Burrows, J. P., and Coauthors, 1999: The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci., 56 , 151175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carn, S. A., Krueger A. J. , Bluth G. S. J. , Schaefer S. J. , Krotkov N. A. , Watson I. M. , and Datta S. , 2003: Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: A 22-year record of sulfur dioxide and ash emissions. Volcanic Degassing, C. Oppenheimer, D. M. Pyle, and J. Barclay, Eds., Special Publication 213, Geological Society of London, 177–202.

    • Search Google Scholar
    • Export Citation
  • Carn, S. A., Krueger A. J. , Krotkov N. A. , and Gray M. A. , 2004: Fire at Iraqi sulfur plant emits SO2 clouds detected by Earth Probe TOMS. Geophys. Res. Lett., 31 , L19105. doi:10.1029/2004GL020719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, M., and Coauthors, 2000: Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets. J. Geophys. Res., 105 , (D20). 2468924712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickerson, R. R., and Coauthors, 2007: Aircraft observations of dust and pollutants over northeast China: Insight into the meteorological mechanisms of transport. J. Geophys. Res., 112 , D24S90. doi:10.1029/2007JD008999.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and Rolph G. D. , cited. 2010: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. NOAA/Air Resources Laboratory, Silver Spring, MD. [Available online at http://ready.arl.noaa.gov/HYSPLIT.php].

    • Search Google Scholar
    • Export Citation
  • Eisinger, M., and Burrows J. P. , 1998: Tropospheric sulfur dioxide observed by the ERS-2 GOME instrument. Geophys. Res. Lett., 25 , 41774180.

  • EPA, 2000: National Air Pollutant Emission Trends, 1900–1998. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards Rep. EPA-454/R-00-002, 238 pp. [Available online at http://www.epa.gov/ttn/chief/trends/trends98/trends98.pdf].

    • Search Google Scholar
    • Export Citation
  • Fioletov, V. E., Griffioen E. , Kerr J. B. , Wardle D. I. , and Uchino O. , 1998: Influence of volcanic sulfur dioxide on spectral UV irradiance as measured by Brewer spectrophotometers. Geophys. Res. Lett., 25 , 16651668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galle, B., and Coauthors, 2010: Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcano gas monitoring: Network layout and instrument description. J. Geophys. Res., 115 , D05304. doi:10.1029/2009JD011823.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., Dudhia J. , and Stauffer D. , 1994: A description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp.

    • Search Google Scholar
    • Export Citation
  • Hirokawa, J., Kato T. , and Mafuné F. , 2009: In situ measurements of atmospheric nitrous acid by chemical ionization mass spectrometry using chloride ion transfer reactions. Anal. Chem., 81 , 83808386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huey, L. G., Hanson D. R. , and Howard C. J. , 1995: Reactions of SF6 and I with atmospheric trace gases. J. Phys. Chem., 99 , 50015008.

  • Kearney, C. S., Dean K. , Realmuto V. J. , Watson I. M. , Dehn J. , and Prata F. , 2008: Observations of SO2 production and transport from Bezymianny volcano, Kamchatka using the MODerate resolution Infrared Spectroradiometer (MODIS). Int. J. Remote Sens., 29 , 66476665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khokhar, M. F., Frankenberg C. , Van Roozendael M. , Beirle S. , Kühl S. , Richter A. , Platt U. , and Wagner T. , 2005: Satellite observations of atmospheric SO2 from volcanic eruptions during the time-period of 1996–2002. Adv. Space Res., 36 , 879887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kloster, S., and Coauthors, 2008: Influence of future air pollution mitigation strategies on total aerosol radiative forcing. Atmos. Chem. Phys., 8 , 64056437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komhyr, W. D., 1969: Electrochemical concentration cells for gas analysis. Ann. Geophys., 25 , 203210.

  • Komhyr, W. D., 1986: Operations handbook: Ozone measurements to 40 km altitude with mode 4A electrochemical concentration cell (ECC) ozonesondes (used with 1680-Mhz radiosondes). NOAA Tech. Memo. ERLARL-149, 49 pp.

    • Search Google Scholar
    • Export Citation
  • Komhyr, W. D., 1999: En-Sci Corporation Model KTU-2A Ozonesonde Ozonizer/Test Unit, 7 pp. [Available from EnSci Corporation, P.O. Box 3234, Boulder, CO 80303].

  • Komhyr, W. D., Barnes R. A. , Brothers G. B. , Lathrop J. A. , and Opperman D. P. , 1995: Electrochemical concentration cell performance evaluation during STOIC. J. Geophys. Res., 100 , 92319244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krotkov, N. A., Krueger A. J. , and Bhartia P. K. , 1997: Ultraviolet optical model of volcanic clouds for remote sensing of ash and sulfur dioxide. J. Geophys. Res., 102 , (D18). 2189121904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krotkov, N. A., Carn S. A. , Krueger A. J. , Bhartia P. K. , and Yang K. , 2006: Band residual difference algorithm for retrieval of SO2 from the aura Ozone Monitoring Instrument (OMI). IEEE Trans. Geosci. Remote Sens., 44 , 12591266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krotkov, N. A., Yang K. , Krueger A. , Carn S. A. , Bhartia P. K. , and Levelt P. F. , 2007: SO2 data from the Ozone Monitoring Instrument. Proc. ENVISAT Symp. 2007, Montreux, Switzerland, European Space Agency, ESA SP-636, 509823. [Available online at http://envisat.esa.int/envisatsymposium/proceedings/sessions/3G2/509823kr.pdf].

    • Search Google Scholar
    • Export Citation
  • Krotkov, N. A., and Coauthors, 2008: Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China. J. Geophys. Res., 113 , D16S40. doi:10.1029/2007JD008818.

    • Search Google Scholar
    • Export Citation
  • Krueger, A. J., 1983: Sighting of El Chichon sulfur dioxide with the Nimbus-7 total ozone mapping spectrometer. Science, 220 , 13771378.

  • Krueger, A. J., Walter L. S. , Bhartia P. K. , Schnetzler C. C. , Krotkov N. A. , Sprod I. , and Bluth G. J. S. , 1995: Volcanic sulfur-dioxide measurements from the total ozone mapping spectrometer instruments. J. Geophys. Res., 100 , (D7). 1405714076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, A. J., Schaefer S. J. , Krotkov N. , Bluth G. , and Barker S. , 2000: Ultraviolet remote sensing of volcanic emissions. Remote Sensing of Active Volcanism, Geophys. Monogr., Vol. 116, Amer. Geophys. Union, 25–43.

    • Search Google Scholar
    • Export Citation
  • Lee, C., Richter A. , Weber M. , and Burrows J. P. , 2008: SO2 retrieval from SCIAMACHY using the Weighting Function DOAS (WFDOAS) technique: Comparison with standard DOAS retrieval. Atmos. Chem. Phys., 8 , 61376145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C., Martin R. V. , Donkelaar A. , O’Byrne G. , Krotkov N. A. , Richter A. , Huey L. G. , and Holloway J. S. , 2009: Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis. J. Geophys. Res., 114 , D22303. doi:10.1029/2009JD012123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levelt, P. F., Hilsenrath E. , Leppelmeier G. W. , van den Oord G. B. J. , Bhartia P. K. , Tamminen J. , de Haan J. F. , and Veefkind J. P. , 2006a: Science objectives of the Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens., 44 , 11991208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levelt, P. F., and Coauthors, 2006b: The Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens., 44 , 10931101.

  • Lovejoy, E. R., and Wilson R. R. , 1998: Kinetic studies of negative ion reactions in a quadrupole ion trap: Absolute rate coefficients and ion energies. J. Phys. Chem. A, 102 , 23092315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luke, W. T., 1997: Evaluation of a commercial pulsed fluorescence detector for the measurement of low-level SO2 concentrations during the Gas-Phase Sulfur Intercomparison Experiment. J. Geophys. Res., 102 , 1625516265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, A., Wittrock F. , and Burrows J. P. , 2006: SO2 measurements with SCIAMACHY. Proc. Atmospheric Science Conf., Frascati, Italy, European Space Agency, ESA SP-628, 6 pp. [Available online at http://earth.esa.int/workshops/atmos2006/participants/804/paper_richter_esa_06.pdf].

    • Search Google Scholar
    • Export Citation
  • Rolph, G. D., cited. 2010: Real-time Environmental Applications and Display sYstem (READY). NOAA/Air Resources Laboratory, Silver Spring, MD. [Available online at http://ready.arl.noaa.gov/].

    • Search Google Scholar
    • Export Citation
  • Saltzman, B. E., and Wartburg A. F. , 1965: Absorption tube for removal of interfering sulfur dioxide in analysis of atmospheric oxidant. Anal. Chem., 37 , 779782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., and Coauthors, 2006: Overview of the EOS Aura Mission. IEEE Trans. Geosci. Remote Sens., 44 , 10661074.

  • Schoeberl, M. R., and Sparling L. , 1995: Trajectory Modeling, in Diagnostic Tools in Atmospheric Physics. Proc. Int. Sch. Phys. “Enrico Fermi”, 124 , 289306.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and Pandis S. N. , 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley and Sons, 1326 pp.

    • Search Google Scholar
    • Export Citation
  • Smit, H. G., and Coauthors, 2007: Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: Insights from the Jülich Ozone Sonde Intercomparison Experiment (JOSIE). J. Geophys. Res., 112 , D19306. doi:10.1029/2006JD007308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloman, S., Qin D. , Manning M. , Chen Z. , Marquis M. , Averyt K. B. , Tignor M. , and Miller H. L. , Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Taubman, B. F., Hains J. C. , Thompson A. M. , Marufu L. T. , Doddridge B. G. , Stehr J. W. , Piety C. A. , and Dickerson R. R. , 2006: Aircraft vertical profiles of trace gas and aerosol pollution over the mid-Atlantic United States: Statistics and meteorological cluster analysis. J. Geophys. Res., 111 , D10S07. doi:10.1029/2005JD006196.

    • Search Google Scholar
    • Export Citation
  • Thomas, W., Erbertseder T. , Ruppert T. , van Roozendael M. , Verdebout J. , Balis D. , Meleti C. , and Zerefos C. , 2005: On the retrieval of volcanic sulfur dioxide emissions from GOME backscatter measurements. J. Atmos. Chem., 50 , 295320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., and Coauthors, 2003: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements. J. Geophys. Res., 108 , 8238. doi:10.1029/2001JD000967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., and Coauthors, 2007: IONS (INTEX Ozonesonde Network Study, 2004). 1. Summertime UT/LS (upper troposphere/lower stratosphere) ozone over northeastern North America. J. Geophys. Res., 112 , D12S12. doi:10.1029/2006JD007441.

    • Search Google Scholar
    • Export Citation
  • Warmbt, W., and Herrmann G. , 1977: Surface ozone measurements utilizing chromium trioxide filters. Proc. Joint Symposium Atmospheric Ozone, Vol. 1, Dresden, Germany, 179–188.

    • Search Google Scholar
    • Export Citation
  • Yang, K., Krotkov N. A. , Krueger A. J. , Carn S. A. , Bhartia P. K. , and Levelt P. F. , 2007: Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument (OMI): Comparison and limitations. J. Geophys. Res., 112 , D24S43. doi:10.1029/2007JD008825.

    • Search Google Scholar
    • Export Citation
  • Yang, K., Krotkov N. A. , Krueger A. J. , Carn S. A. , Bhartia P. K. , and Levelt P. F. , 2009a: Improving retrieval of volcanic sulfur dioxide from backscattered UV satellite observations. Geophys. Res. Lett., 36 , L03102. doi:10.1029/2008GL036036.

    • Search Google Scholar
    • Export Citation
  • Yang, K., Liu X. , Krotkov N. A. , Krueger A. J. , and Carn S. A. , 2009b: Estimating the altitude of volcanic sulfur dioxide plumes from space borne hyper-spectral UV measurements. Geophys. Res. Lett., 36 , L10803. doi:10.1029/2009GL038025.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 815 260 12
PDF Downloads 378 64 7