An Autonomous Open-Ocean Stereoscopic PIV Profiler

Jonah V. Steinbuck Environmental Fluid Mechanics Laboratory, Stanford University, Stanford, California

Search for other papers by Jonah V. Steinbuck in
Current site
Google Scholar
PubMed
Close
,
Paul L. D. Roberts Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Paul L. D. Roberts in
Current site
Google Scholar
PubMed
Close
,
Cary D. Troy Environmental Fluid Mechanics Laboratory, Stanford University, Stanford, California

Search for other papers by Cary D. Troy in
Current site
Google Scholar
PubMed
Close
,
Alexander R. Horner-Devine Environmental Fluid Mechanics Laboratory, Stanford University, Stanford, California

Search for other papers by Alexander R. Horner-Devine in
Current site
Google Scholar
PubMed
Close
,
Fernando Simonet Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Fernando Simonet in
Current site
Google Scholar
PubMed
Close
,
Alfred H. Uhlman Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Alfred H. Uhlman in
Current site
Google Scholar
PubMed
Close
,
Jules S. Jaffe Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Jules S. Jaffe in
Current site
Google Scholar
PubMed
Close
,
Stephen G. Monismith Environmental Fluid Mechanics Laboratory, Stanford University, Stanford, California

Search for other papers by Stephen G. Monismith in
Current site
Google Scholar
PubMed
Close
, and
Peter J. S. Franks Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Peter J. S. Franks in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Over the past decade, a novel free-fall imaging profiler has been under development at the Scripps Institution of Oceanography to observe and quantify biological and physical structure in the upper 100 m of the ocean. The profiler provided the first detailed view of microscale phytoplankton distributions using in situ planar laser-induced fluorescence. The present study examines a recent incarnation of the profiler that features microscale turbulent flow measurement capabilities using stereoscopic particle image velocimetry (PIV). As the profiler descends through the water column, a vertical sheet of laser light illuminates natural particles below the profiler. Two sensitive charge-coupled device (CCD) cameras image a 25 cm × 25 cm × 0.6 cm region at a nominal frame rate of 8 Hz. The stereoscopic camera configuration allows all three components of velocity to be measured in the vertical plane with an average spatial resolution of approximately 3 mm. The performance of the PIV system is evaluated for deployments offshore of the southern California coast. The in situ image characteristics, including natural particle seeding density and imaged particle size, are found to be suitable for PIV. Ensemble-averaged velocity and dissipation of turbulent kinetic energy estimates from the stereoscopic PIV system are consistent with observations from an acoustic Doppler velocimeter and acoustic Doppler current profiler, though it is revealed that the present instrument configuration influences the observed flow field. The salient challenges in adapting stereoscopic PIV for in situ, open-ocean turbulence measurements are identified, including cross-plane particle motion, instrument intrusiveness, and measurement uncertainty limitations. These challenges are discussed and recommendations are provided for future development: improved alignment with the dominant flow direction, mitigation of instrument intrusiveness, and improvements in illumination and imaging resolution.

# Current affiliation: Civil and Environmental Engineering, Purdue University, West Lafayette, Indiana

@ Current affiliation: Civil and Environmental Engineering, University of Washington, Seattle, Washington

Corresponding author address: Jonah Steinbuck, 473 Via Ortega, Yang and Yamazaki Environment and Energy Building, Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020. Email: vittorio@stanford.edu

Abstract

Over the past decade, a novel free-fall imaging profiler has been under development at the Scripps Institution of Oceanography to observe and quantify biological and physical structure in the upper 100 m of the ocean. The profiler provided the first detailed view of microscale phytoplankton distributions using in situ planar laser-induced fluorescence. The present study examines a recent incarnation of the profiler that features microscale turbulent flow measurement capabilities using stereoscopic particle image velocimetry (PIV). As the profiler descends through the water column, a vertical sheet of laser light illuminates natural particles below the profiler. Two sensitive charge-coupled device (CCD) cameras image a 25 cm × 25 cm × 0.6 cm region at a nominal frame rate of 8 Hz. The stereoscopic camera configuration allows all three components of velocity to be measured in the vertical plane with an average spatial resolution of approximately 3 mm. The performance of the PIV system is evaluated for deployments offshore of the southern California coast. The in situ image characteristics, including natural particle seeding density and imaged particle size, are found to be suitable for PIV. Ensemble-averaged velocity and dissipation of turbulent kinetic energy estimates from the stereoscopic PIV system are consistent with observations from an acoustic Doppler velocimeter and acoustic Doppler current profiler, though it is revealed that the present instrument configuration influences the observed flow field. The salient challenges in adapting stereoscopic PIV for in situ, open-ocean turbulence measurements are identified, including cross-plane particle motion, instrument intrusiveness, and measurement uncertainty limitations. These challenges are discussed and recommendations are provided for future development: improved alignment with the dominant flow direction, mitigation of instrument intrusiveness, and improvements in illumination and imaging resolution.

# Current affiliation: Civil and Environmental Engineering, Purdue University, West Lafayette, Indiana

@ Current affiliation: Civil and Environmental Engineering, University of Washington, Seattle, Washington

Corresponding author address: Jonah Steinbuck, 473 Via Ortega, Yang and Yamazaki Environment and Energy Building, Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020. Email: vittorio@stanford.edu

Save
  • Alldredge, A. L., and Coauthors, 2002: Occurrence and mechanisms of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord. Mar. Ecol. Prog. Ser., 233 , 112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bertuccioli, L., Roth G. I. , Katz J. , and Osborn T. R. , 1999: A submersible particle image velocimetry system for turbulence measurements in the bottom boundary layer. J. Atmos. Oceanic Technol., 16 , 16351646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. D., and Imberger J. , 1986: Vertically rising microstructure profiler. J. Atmos. Oceanic Technol., 3 , 462471.

  • Cowen, E. A., and Monismith S. G. , 1997: A hybrid digital particle tracking velocimetry technique. Exp. Fluids, 22 , 199211.

  • Cowles, T. J., Desiderio R. A. , and Neuer S. , 1993: In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra. Mar. Biol., 115 , 217222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dekshenieks, M. M., Donaghay P. L. , Sullivan J. M. , Rines J. E. B. , Osborn T. R. , and Twardowski M. S. , 2001: Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes. Mar. Ecol. Prog. Ser., 223 , 6171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doron, P., Bertuccioli L. , and Katz J. , 2001: Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. J. Phys. Oceanogr., 31 , 21082134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franks, P. J. S., 1995: Thin layers of phytoplankton: A model of formation by near-inertial wave shear. Deep-Sea Res., 42 , 7591.

  • Franks, P. J. S., and Jaffe J. S. , 2001: Microscale distributions of phytoplankton: Initial results from a two-dimensional imaging fluorometer, OSST. Mar. Ecol. Prog. Ser., 220 , 5972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franks, P. J. S., and Jaffe J. S. , 2008: Microscale variability in the distributions of large fluorescent particles observed in situ with a planar laser imaging fluorometer. J. Mar. Syst., 69 , 254270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., Scully M. E. , and Ralston D. K. , 2008: Quantifying vertical mixing in estuaries. Environ. Fluid Mech., 8 , 495509.

  • Holliday, D., Donaghay P. L. , Greenlaw C. F. , McGehee D. E. , McManus M. M. , Sullivan J. M. , and Miksis J. L. , 2003: Advances in defining fine- and micro-scale pattern in marine plankton. Aquat. Living Resour., 16 , 131136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaffe, J., Franks P. , and Leising A. , 1998: Simultaneous imaging of phytoplankton and zooplankton distributions. Oceanography, 11 , 2429.

  • Katija, K., and Dabiri J. O. , 2008: In situ field measurements of aquatic animal-fluid interactions using a Self-Contained Underwater Velocimetry Apparatus (SCUVA). Limnol. Oceanogr. Methods, 6 , 162173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keane, R. D., and Adrian R. J. , 1992: Theory of cross-correlation analysis of PIV images. Appl. Sci. Res., 49 , 191215.

  • Kocsis, O., Prandke H. , Stips A. , Simon A. , and Wüest A. , 1999: Comparison of dissipation of turbulent kinetic energy determined from shear and temperature microstructure. J. Mar. Syst., 21 , 6784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, Q., Bootsma A. H. A. , Xiao J. , Val Klump J. , Hume A. , Long M. H. , and Berg P. , 2009: Development of an in situ underwater particle image velocimetry (UWPIV) system. Limnol. Oceanogr. Methods, 7 , 169184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohrmann, A., Hacket B. , and Roed L. P. , 1990: High resolution measurements of turbulence, velocity, and stress using a pulse-to-pulse coherent sonar. J. Atmos. Oceanic Technol., 16 , 15681579.

    • Search Google Scholar
    • Export Citation
  • McManus, M. A., Cheriton O. M. , Drake P. J. , Holliday D. V. , Storlazzi C. D. , Donaghay P. L. , and Greenlaw C. F. , 2005: Effects of physical processes on structure and transport of thin zooplankton layers in the coastal ocean. Mar. Ecol. Prog. Ser., 301 , 199215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merklinger, H. M., 1993: Focusing the view camera. 128 pp. [Available online at http://www.trenholm.org/hmmerk/FVC16.pdf].

  • Nimmo Smith, W. A. M., Atsavapranee P. , Katz J. , and Osborn T. R. , 2002: PIV measurements in the bottom boundary layer of the coastal ocean. Exp. Fluids, 33 , 962971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent kinetic energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12 , 256271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

  • Powell, I., 1987: Design of a laser-beam line expander. Appl. Opt., 26 , 37053709.

  • Prasad, A. K., 2000: Stereoscopic particle image velocimetry. Exp. Fluids, 29 , 103116.

  • Prasad, A. K., and Adrian R. J. , 1993: Stereoscopic particle image velocimetry applied to liquid flows. Exp. Fluids, 15 , 4960.

  • Raffel, M., Willert C. , and Kompenhans J. , 1998: Particle Image Velocimetry: A Practical Guide. Springer-Verlag, 253 pp.

  • Shavit, U., Lowe R. J. , and Steinbuck J. V. , 2007: Intensity capping: A simple method to improve cross-correlation PIV results. Exp. Fluids, 42 , 225240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloff, S. M., Adrian R. J. , and Liu Z-C. , 1997: Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol., 8 , 14411454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stacey, M. T., Monismith S. G. , and Burau J. R. , 1999: Measurements of Reynolds stress profiles in unstratified tidal flow. J. Geophys. Res., 104 , 1093310949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stacey, M. T., McManus M. A. , and Steinbuck J. V. , 2007: Convergences and divergences and thin layer formation and maintenance. Limnol. Oceanogr., 52 , 15231532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sveen, K. J., 2004: An introduction to MatPIV v. 1.6.1. University of Oslo, 27 pp. [Available online at http://folk.uio.no/jks/matpiv/].

    • Search Google Scholar
    • Export Citation
  • Tanaka, T., and Eaton J. K. , 2007: A correction method for measuring turbulence kinetic energy dissipation rate by PIV. Exp. Fluids, 42 , 893902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and Lumley J. L. , 1972: A First Course in Turbulence. The MIT Press, 300 pp.

  • Tritico, H. M., Cotel A. J. , and Clarke J. N. , 2007: Development, testing and demonstration of a portable submersible miniature particle imaging velocimetry device. Meas. Sci. Technol., 18 , 25552562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voulgaris, G., and Trowbridge J. H. , 1998: Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. J. Atmos. Oceanic Technol., 15 , 272289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, B., 2001: Notes on view camera geometry. Tech. Rep., 55 pp. [Available online at http://www.bobwheeler.com/photo/ViewCam.pdf].

  • Willert, C., 1997: Stereoscopic digital particle image velocimetry for application in wind tunnel flows. Meas. Sci. Technol., 8 , 14651479.

  • Zawada, D. G., 2002: The application of a novel multispectral imaging system to the in vivo study of fluorescent compounds in selected marine organisms. Ph.D. thesis, University of California, San Diego, 127 pp.

  • Zawada, D. G., 2003: Image processing of underwater multispectral imagery. IEEE J. Oceanic Eng., 28 , 583594.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 932 472 102
PDF Downloads 335 85 7