Abstract
Efficiently profiling the water column to achieve both high vertical and horizontal resolution from a moving vessel in deep water is difficult. Current solutions, such as CTD tow-yos, moving vessel profilers, and undulating tow bodies, are limited by ship speed or water depth. As a consequence, it is difficult to obtain oceanographic sections with sufficient resolution to identify many relevant scales over the deeper sections of the water column. This paper presents a new concept for a profiling vehicle that slides up and down a towed wire in a controlled manner using the lift created by wing foils. The wings provide a novel low-power method of propulsion along the cable by using the free stream velocity of the wire moving through the water in similar fashion to a sailboat sailing up wind. Scale model tests show a wide range of achievable profiling glide slopes for tow cable angles between vertical and 45°, and effective isolation of cable strum vibration from the towed vehicle body. The concept is not depth limited and will offer two-dimensional resolution that meets or exceeds current undulating tow bodies over the full water column. Additionally, this system could be used simultaneously with many other deep towed instrument packages to produce complementary datasets.
Current affiliation: Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada.