Adaptive Range Oversampling to Achieve Faster Scanning on the National Weather Radar Testbed Phased-Array Radar

Christopher D. Curtis Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Christopher D. Curtis in
Current site
Google Scholar
PubMed
Close
and
Sebastián M. Torres Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Sebastián M. Torres in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes a real-time implementation of adaptive range oversampling processing on the National Weather Radar Testbed phased-array radar. It is demonstrated that, compared to conventional matched-filter processing, range oversampling can be used to reduce scan update times by a factor of 2 while producing meteorological data with similar quality. Adaptive range oversampling uses moment-specific transformations to minimize the variance of meteorological variable estimates. An efficient algorithm is introduced that allows for seamless integration with other signal processing functions and reduces the computational burden. Through signal processing, a new dimension is added to the traditional trade-off triangle that includes the variance of estimates, spatial coverage, and update time. That is, by trading an increase in computational complexity, data with higher temporal resolution can be collected and the variance of estimates can be improved without affecting the spatial coverage.

Corresponding author address: Christopher Curtis, 120 David L. Boren Blvd., National Weather Center, Norman, OK 73072. E-mail: chris.curtis@noaa.gov

Abstract

This paper describes a real-time implementation of adaptive range oversampling processing on the National Weather Radar Testbed phased-array radar. It is demonstrated that, compared to conventional matched-filter processing, range oversampling can be used to reduce scan update times by a factor of 2 while producing meteorological data with similar quality. Adaptive range oversampling uses moment-specific transformations to minimize the variance of meteorological variable estimates. An efficient algorithm is introduced that allows for seamless integration with other signal processing functions and reduces the computational burden. Through signal processing, a new dimension is added to the traditional trade-off triangle that includes the variance of estimates, spatial coverage, and update time. That is, by trading an increase in computational complexity, data with higher temporal resolution can be collected and the variance of estimates can be improved without affecting the spatial coverage.

Corresponding author address: Christopher Curtis, 120 David L. Boren Blvd., National Weather Center, Norman, OK 73072. E-mail: chris.curtis@noaa.gov
Save
  • Bluestein, H. B., and Wakimoto R. M. , 2003: Mobile radar observations of severe convective storms. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 105–138.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., French M. M. , PopStefanija I. , Bluth R. T. , and Knorr J. B. , 2010: A mobile, phased-array Doppler radar for the study of severe convective storms: The MWR-05XP. Bull. Amer. Meteor. Soc., 91, 579600.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., Wood V. T. , and Sirmans D. , 2000: Improved WSR-88D scanning strategies for convective storms. Wea. Forecasting, 15, 208220.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., Carpenter M. J. , and Burghart C. D. , 1985: Doppler radar sampling limitations in convective storms. J. Atmos. Oceanic Technol., 2, 357361.

    • Search Google Scholar
    • Export Citation
  • Chiuppesi, F., Galati G. , and Lombardi P. , 1980: Optimisation of rejection filters. IEE Proc. F Commun. Radar Signal Process., 127 (5), 354360.

    • Search Google Scholar
    • Export Citation
  • Choudhury, S., and Chandrasekar V. , 2007: Wideband reception and processing for dual-polarization radars with dual transmitters. J. Atmos. Oceanic Technol., 24, 95101.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Hefner, E., and Chandrasekar V. , 2008: Whitening dual-polarized weather radar signals with a Hermitian transformation. IEEE Trans. Geosci. Remote Sens., 46, 23572364.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P., and Torres S. , 2011: High-temporal resolution capabilities of the National Weather Radar Testbed phased-array radar. J. Appl. Meteor. Climatol., 50, 579593.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P., Priegnitz D. L. , Manross K. L. , Smith T. M. , and Adams R. W. , 2008: Rapid sampling of severe storms by the National Weather Radar Testbed Phased Array Radar. Wea. Forecasting, 23, 808824.

    • Search Google Scholar
    • Export Citation
  • Ivić, I., Zahrai A. , and Zrnić D. , 2003a: Digital IF receiver—Capabilities, tests, and evaluation. Preprints, 31th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 9B.3. [Available online at http://ams.confex.com/ams/pdfpapers/64211.pdf.]

    • Search Google Scholar
    • Export Citation
  • Ivić, I., Zrnić D. , and Torres S. , 2003b: Whitening in range to improve weather radar spectral moment estimates. Part II: Experimental evaluation. J. Atmos. Oceanic Technol., 20, 14491459.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Ryzhkov A. V. , Melnikov V. M. , and Schuur T. J. , 2010: Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 37623786.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. J., Wang T. C. , and Lin J. H. , 1986: Pressure and temperature perturbations within a squall-line thunderstorm derived from SESAME dual-Doppler data. J. Atmos. Sci., 43, 23022327.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817.

    • Search Google Scholar
    • Export Citation
  • Meymaris, G., Williams J. , and Hubbert J. , 2009: Performance of a proposed hybrid spectrum width estimator for the NEXRAD ORDA. Preprints, 25th Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 11B.1. [Available online at http://ams.confex.com/ams/pdfpapers/145958.pdf.]

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., and Kropfli R. A. , 1980: Part II: Experimental design and processes. Bull. Amer. Meteor. Soc., 61, 11731177.

  • National Academies Press, 2008: Evaluation of the Multifunction Phased Array Radar Planning Process. National Research Council, 92 pp.

  • NOAA, 2006: Doppler radar meteorological observations. Part C: WSR-88D products and algorithms. Office of the Federal Coordinator for Meteorological Services and Supporting Research, Federal Meteorological Handbook 11, FCH-H11C-2006, 23 pp.

    • Search Google Scholar
    • Export Citation
  • Qiu, C.-J., and Xu Q. , 1996: Least squares retrieval of microburst winds from single-Doppler radar data. Mon. Wea. Rev., 124, 11321144.

    • Search Google Scholar
    • Export Citation
  • Siggia, A., and Passarelli J. , 2004: Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation. Proc. Third European Conf. on Radar in Meteorology and Hydrology, Visby, Gotland, Sweden, ERAD, 67–73.

    • Search Google Scholar
    • Export Citation
  • Torres, S., 2001: Estimation of Doppler and polarimetric variables for weather radars. Ph.D. dissertation, University of Oklahoma, 158 pp.

    • Search Google Scholar
    • Export Citation
  • Torres, S., and Zrnić D. , 2003a: Whitening in range to improve weather radar spectral moment estimates. Part I: Formulation and simulation. J. Atmos. Oceanic Technol., 20, 14331448.

    • Search Google Scholar
    • Export Citation
  • Torres, S., and Zrnić D. , 2003b: Whitening of signals in range to improve estimates of polarimetric variables. J. Atmos. Oceanic Technol., 20, 17761789.

    • Search Google Scholar
    • Export Citation
  • Torres, S., and Ivić I. , 2005: Demonstration of range oversampling techniques on the WSR-88D. Preprints, 32nd Int. Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 4R.5. [Available online at http://ams.confex.com/ams/pdfpapers/96151.pdf.]

    • Search Google Scholar
    • Export Citation
  • Torres, S., Curtis C. , and Cruz J. R. , 2004a: Pseudowhitening of weather radar signals to improve spectral moment and polarimetric variable estimates at low signal-to-noise. IEEE Trans. Geosci. Remote Sens., 42, 941949.

    • Search Google Scholar
    • Export Citation
  • Torres, S., Dubel Y. , and Zrnić D. , 2004b: Design, implementation, and demonstration of a staggered PRT algorithm for the WSR-88D. J. Atmos. Oceanic Technol., 21, 13891399.

    • Search Google Scholar
    • Export Citation
  • Torres, S., Curtis C. , Ivić I. , Warde D. , Forren E. , Thompson J. , Priegnitz D. , and Adams R. , 2010: Update on signal processing upgrades for the National Weather Radar Testbed. Preprints, 26th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Atlanta, GA, Amer. Meteor. Soc., 14B.2. [Available online at http://ams.confex.com/ams/pdfpapers/163745.pdf.]

    • Search Google Scholar
    • Export Citation
  • Warde, D., and Torres S. , 2010: Automated real-time mitigation of ground clutter contamination for Doppler weather radars. Preprints, Sixth European Conf. on Radar Meteorology and Hydrology (ERAD), Sibiu, Romania, Romanian National Meteorological Administration, P2.10. [Available online at http://www.erad2010.org/pdf/POSTER/02_Advances/10_ERAD2010_0349_s.pdf.]

    • Search Google Scholar
    • Export Citation
  • Weber, M. E., Cho J. Y. N. , Herd J. S. , Flavin J. M. , Benner W. E. , and Torok G. S. , 2007: The next-generation multimission U.S. surveillance radar network. Bull. Amer. Meteor. Soc., 88, 17391751.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., Roberts R. D. , Kessinger C. , and McCarthy J. , 1984: Microburst wind structure and evaluation of Doppler radar for airport wind shear detection. J. Climate Appl. Meteor., 23, 898915.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., 2002: The multiple-vortex structure of a tornado. Wea. Forecasting, 17, 473505.

  • Yu, T.-Y., Orescanin M. B. , Curtis C. D. , Zrnić D. S. , and Forsyth D. E. , 2007: Beam multiplexing using the phased-array weather radar. J. Atmos. Oceanic Technol., 24, 616626.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and Stensrud D. J. , 2010: Impact of phased-array radar observations over a short assimilation period: Observing system simulation experiments using an ensemble Kalman filter. Mon. Wea. Rev., 138, 517538.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1975: Simulation of weatherlike Doppler spectra and signals. J. Appl. Meteor., 14, 619620.

  • Zrnić, D. S., and Coauthors, 2007: Agile beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 704 402 10
PDF Downloads 326 80 4