Bottom Topography Mapping via Nonlinear Data Assimilation

Edward D. Zaron Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon

Search for other papers by Edward D. Zaron in
Current site
Google Scholar
PubMed
Close
,
Marie-Aude Pradal Center for Maritime Systems, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Marie-Aude Pradal in
Current site
Google Scholar
PubMed
Close
,
Patrick D. Miller Center for Maritime Systems, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Patrick D. Miller in
Current site
Google Scholar
PubMed
Close
,
Alan F. Blumberg Center for Maritime Systems, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Alan F. Blumberg in
Current site
Google Scholar
PubMed
Close
,
Nickitas Georgas Center for Maritime Systems, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Nickitas Georgas in
Current site
Google Scholar
PubMed
Close
,
Wei Li Center for Maritime Systems, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Wei Li in
Current site
Google Scholar
PubMed
Close
, and
Julia Muccino Cornuelle Center for Maritime Systems, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Julia Muccino Cornuelle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A variational data assimilation method is described for bottom topography mapping in rivers and estuaries using remotely sensed observations of water surface currents. The velocity field and bottom topography are related by the vertically integrated momentum and continuity equations, leading to a nonlinear inverse problem for bottom topography, which is solved using a Picard iteration strategy combined with a nonlinear line search. An illustration of the method is shown for Haverstraw Bay, in the Hudson River, where the known bottom topography is well reconstructed. Once the topography has been estimated, currents and water levels may be forecast. The method makes feasible 1) the estimation of bottom topography in regions where in situ data collection may be impossible, dangerous, or expensive, and 2) the calibration of barotropic shallow-water models via control of the bottom topography.

Corresponding author address: Edward D. Zaron, P.O. Box 751, Department of Civil and Environmental Engineering, Portland State University, Portland, OR 97207-0751. E-mail: zaron@cecs.pdx.edu

Abstract

A variational data assimilation method is described for bottom topography mapping in rivers and estuaries using remotely sensed observations of water surface currents. The velocity field and bottom topography are related by the vertically integrated momentum and continuity equations, leading to a nonlinear inverse problem for bottom topography, which is solved using a Picard iteration strategy combined with a nonlinear line search. An illustration of the method is shown for Haverstraw Bay, in the Hudson River, where the known bottom topography is well reconstructed. Once the topography has been estimated, currents and water levels may be forecast. The method makes feasible 1) the estimation of bottom topography in regions where in situ data collection may be impossible, dangerous, or expensive, and 2) the calibration of barotropic shallow-water models via control of the bottom topography.

Corresponding author address: Edward D. Zaron, P.O. Box 751, Department of Civil and Environmental Engineering, Portland State University, Portland, OR 97207-0751. E-mail: zaron@cecs.pdx.edu
Save
  • Bennett, A. F., 1992: Inverse Methods in Physical Oceanography. 1st ed. Cambridge University Press, 346 pp.

  • Bennett, A. F., 2002: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, 234 pp.

  • Bennett, A. F., Chua B. S. , Pflaum B. L. , Erwig M. , Fu Z. , Loft R. D. , and Muccino J. C. , 2008: The Inverse Ocean Modeling system. Part I: Implementation. J. Atmos. Oceanic Technol., 25, 1608–1622.

    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., and Herring H. J. , 1987: Circulation modelling using orthogonal curvilinear coordinates. Three-Dimensional Models of Marine and Estuarine Dynamics, J. C. J. Nihoul and B. M. Jamart, Eds., Elsevier Oceanography Series, Vol. 45, Elsevier, 55–88.

    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., and Mellor G. L. , 1987: A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models, N. S. Heaps, Ed., Amer. Geophys. Union, 1–16.

    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., and Georgas N. , 2008: Quantifying uncertainty in estuarine and coastal ocean circulation modeling. J. Hydraul. Eng., 134, 403–415.

    • Search Google Scholar
    • Export Citation
  • Brent, R. P., 1973: An algorithm with guaranteed convergence for finding a zero of a function. Algorithms for Minimization without Derivatives, Prentice Hall, 47–60.

    • Search Google Scholar
    • Export Citation
  • Bruno, M. S., Blumberg A. F. , and Harrington T. O. , 2006: The urban ocean observatory—Coastal ocean observations and forecasting in the New York Bight. J. Mar. Sci. Environ., C4, 31–39.

    • Search Google Scholar
    • Export Citation
  • Chua, B., and Bennett A. F. , 2001: An inverse ocean modeling system. Ocean Modell., 3, 137–165.

  • Courtier, P., 1997: Dual formulation of four-dimensional assimilation. Quart. J. Roy. Meteor. Soc., 123, 2449–2461.

  • Craven, P., and Wahba G. , 1979: Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math., 31, 377–403.

    • Search Google Scholar
    • Export Citation
  • Cressman, G., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367–374.

  • Das, S. K., and Lardner R. W. , 1991: On the estimation of parameters of hydraulic models by assimilation of periodic tidal data. J. Geophys. Res., 96, 15 187–15 196.

    • Search Google Scholar
    • Export Citation
  • Derber, J., and Rosati A. , 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 1333–1347.

  • de Sturler, E., 1994: Iterative methods on distributed memory computers. Ph.D. thesis, Delft University of Technology, 130 pp.

  • deSwart, H. E., and Zimmerman J. T. , 2009: Morphodynamics of tidal inlet systems. Annu. Rev. Fluid Mech., 41, 203–229.

  • Dugan, J. P., and Piotrowski C. C. , 2003: Surface current measurement using visible image time series. Remote Sens. Environ., 1, 309–319.

    • Search Google Scholar
    • Export Citation
  • Dugan, J. P., and Coauthors, 2001a: Airborne optical system for remote sensing of ocean waves. J. Atmos. Oceanic Technol., 18, 1267–1276.

    • Search Google Scholar
    • Export Citation
  • Dugan, J. P., Piotrowski C. C. , and Williams J. Z. , 2001b: Water depth and surface current retrievals from airborne optical measurements of surface gravity wave dispersion. J. Geophys. Res., 106, 16 903–16 915.

    • Search Google Scholar
    • Export Citation
  • Frascati, A., and Lanzoni S. , 2009: Morphodynamic regime and long-term evolution of meandering rivers. J. Geophys. Res., 114, F02002.

  • Heemink, A. W., Mouthaan E. E. , Roest M. R. , Vollebregt E. A. , Robaczewska K. B. , and Verlaan M. , 2002: Inverse 3D shallow water flow modeling of the continental shelf. Cont. Shelf Res., 22, 465–484.

    • Search Google Scholar
    • Export Citation
  • Hirose, N., 2005: Least-squares estimation of bottom topography using horizontal velocity measurements in the Tsushima/Korea Straits. J. Oceanogr., 61, 789–794.

    • Search Google Scholar
    • Export Citation
  • Ji, Z., Morton M. R. , and Hamrick J. M. , 2001: Wetting and drying simulation of estuarine processes. Estuarine Coastal Shelf Sci., 53, 683–700.

    • Search Google Scholar
    • Export Citation
  • Lardner, R. W., Al-Rabeh A. H. , and Gunay N. , 1993: Optimal estimation of parameters for a two-dimensional hydrodynamical model of the Arabian Gulf. J. Geophys. Res., 98, 18 229–18 242.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1967: The representation of small-scale turbulence in numerical simulation experiments. Proc. IBM Scientific Computing Symp. Environmental Science, IBM, 195.

    • Search Google Scholar
    • Export Citation
  • Losch, M., and Wunsch C. , 2003: Bottom topography as a control variable in an ocean model. J. Atmos. Oceanic Technol., 20, 1685–1696.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P., 1987: Systematic design of observational arrays. J. Phys. Oceanogr., 17, 885–902.

  • Mourre, B., De Mey P. , Lyard F. , and Le Provost C. , 2004: Assimilation of sea level data over continental shelves: An ensemble method for the exploration of model errors due to uncertainties in bathymetry. Dyn. Atmos. Oceans, 38, 93–121.

    • Search Google Scholar
    • Export Citation
  • Muccino, J. C., and Coauthors, 2008: The inverse ocean modeling system. Part II: Applications. J. Atmos. Oceanic Technol., 25, 1623–1637.

    • Search Google Scholar
    • Export Citation
  • Parker, R. L., 1994: Geophysical Inverse Theory. Princeton University Press, 400 pp.

  • Piotrowski, C. C., and Dugan J. P. , 2002: Accuracy of bathymetry and current retrievals from airborne optical time-series imaging of shoaling waves. IEEE Trans. Geosci. Remote Sens., 40, 2606–2618.

    • Search Google Scholar
    • Export Citation
  • Prandle, D., 2004: How tides and river flows determine estuarine bathymetries. Prog. Oceanogr., 61, 1–26.

  • Prandle, D., Lane A. , and Manning A. J. , 2006: New typologies for estuarine morphology. Geomorphology, 81, 309–315.

  • Riishojgaard, L. P., 1998: A direct way of specifying flow-dependent background error correlations for meorological analysis systems. Tellus, 50A, 42–57.

    • Search Google Scholar
    • Export Citation
  • Sarkisyan, A. S., and Ivanov V. F. , 1971: Joint effect of baroclinicity and bottom relief as an important factor in the dynamics of sea currents. Bull. Acad. Sci. USSR Atmos. Oceanic Phys., 7, 173–188.

    • Search Google Scholar
    • Export Citation
  • Savenije, H. H., 2005: Salinity and Tides in Alluvial Estuaries. Elsevier, 194 pp.

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations I. The basic experiment. Mon. Wea. Rev., 91, 99–164.

    • Search Google Scholar
    • Export Citation
  • Ten-Brummelhuis, P. G., Heemink A. W. , and van den Boogard H. , 1993: Identification of shallow sea models. Int. J. Numer. Methods Fluids, 17, 637–665.

    • Search Google Scholar
    • Export Citation
  • Vennell, R., and Beatson R. , 2006: Moving vessel acoustic Doppler current profiler measurements of tidal stream function using radial basis functions. J. Geophys. Res., 111, C09002, doi:10.1029/2005JC003321.

    • Search Google Scholar
    • Export Citation
  • Wahba, G., 1990: Spline Models for Observational Data. SIAM, 169 pp.

  • Weaver, A., and Courtier P. , 2001: Correlation modelling on the sphere using a generalized diffusion equation. Quart. J. Roy. Meteor. Soc., 127, 1815–1846.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1010 791 44
PDF Downloads 181 27 3