Can CO2 Turbulent Flux Be Measured by Lidar? A Preliminary Study

Fabien Gibert * Laboratoire de Météorologie Dynamique, Institut Pierre et Simon Laplace, Ecole Polytechnique, Palaiseau, France
Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fabien Gibert in
Current site
Google Scholar
PubMed
Close
,
Grady J. Koch NASA Langley Research Center, Hampton, Virginia

Search for other papers by Grady J. Koch in
Current site
Google Scholar
PubMed
Close
,
Jeffrey Y. Beyon NASA Langley Research Center, Hampton, Virginia

Search for other papers by Jeffrey Y. Beyon in
Current site
Google Scholar
PubMed
Close
,
Timothy W. Hilton Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Timothy W. Hilton in
Current site
Google Scholar
PubMed
Close
,
Kenneth J. Davis Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Kenneth J. Davis in
Current site
Google Scholar
PubMed
Close
,
Arlyn Andrews NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Arlyn Andrews in
Current site
Google Scholar
PubMed
Close
,
Pierre H. Flamant * Laboratoire de Météorologie Dynamique, Institut Pierre et Simon Laplace, Ecole Polytechnique, Palaiseau, France

Search for other papers by Pierre H. Flamant in
Current site
Google Scholar
PubMed
Close
, and
Upendra N. Singh NASA Langley Research Center, Hampton, Virginia

Search for other papers by Upendra N. Singh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The vertical profiling of CO2 turbulent fluxes in the atmospheric boundary layer (ABL) is investigated using a coherent differential absorption lidar (CDIAL) operated nearby a tall tower in Wisconsin during June 2007. A CDIAL can perform simultaneous range-resolved CO2 DIAL and velocity measurements. The lidar eddy covariance technique is presented. The aims of the study are (i) an assessment of performance and current limitation of available CDIAL for CO2 turbulent fluxes and (ii) the derivation of instrument specifications to build a future CDIAL to perform accurate range-resolved CO2 fluxes. Experimental lidar CO2 mixing ratio and vertical velocity profiles are successfully compared with in situ sensors measurements. Time and space integral scales of turbulence in the ABL are addressed that result in limitation for time averaging and range accumulation. A first attempt to infer CO2 fluxes using an eddy covariance technique with currently available 2-μm CDIAL dataset is reported.

Corresponding author address: Fabien Gibert, IPSL/LMD Ecole Polytechnique, Palaiseau, France. Email: fabien.gibert@lmd.polytechnique.fr

Abstract

The vertical profiling of CO2 turbulent fluxes in the atmospheric boundary layer (ABL) is investigated using a coherent differential absorption lidar (CDIAL) operated nearby a tall tower in Wisconsin during June 2007. A CDIAL can perform simultaneous range-resolved CO2 DIAL and velocity measurements. The lidar eddy covariance technique is presented. The aims of the study are (i) an assessment of performance and current limitation of available CDIAL for CO2 turbulent fluxes and (ii) the derivation of instrument specifications to build a future CDIAL to perform accurate range-resolved CO2 fluxes. Experimental lidar CO2 mixing ratio and vertical velocity profiles are successfully compared with in situ sensors measurements. Time and space integral scales of turbulence in the ABL are addressed that result in limitation for time averaging and range accumulation. A first attempt to infer CO2 fluxes using an eddy covariance technique with currently available 2-μm CDIAL dataset is reported.

Corresponding author address: Fabien Gibert, IPSL/LMD Ecole Polytechnique, Palaiseau, France. Email: fabien.gibert@lmd.polytechnique.fr

Save
  • Berger, B. W., Davis K. J. , Yi C. , Bakwin P. S. , and Zhao C. L. , 2001: Long-term carbon dioxide fluxes from a very tall tower in a northern forest: Flux measurement methodology. J. Atmos. Oceanic Technol., 18 , 529542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruneau, D., Gibert F. , Flamant P. H. , and Pelon J. , 2006: A complementary study of differential absorption lidar optimization in direct and heterodyne detections. Appl. Opt., 45 , 48984908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desai, A. R., Bolstad P. V. , Cook B. D. , Davis K. J. , and Carey E. V. , 2005: Comparing net ecosystem exchange of carbon dioxide between old-growth and mature forest in the upper Midwest, USA. Agric. For. Meteor., 128 , 3355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engelmann, R., Wandiger U. , Ansmann A. , Müller D. , Zeromskis E. , Althausen D. , and Wehner B. , 2008: Lidar observations of the vertical aerosol flux in the planetary boundary layer. J. Atmos. Oceanic Technol., 25 , 12961306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Favreau, X., Delaval A. , Flamant P. H. , Dabas A. , and Delville P. , 2000: Four-element receiver for pulsed 10-μm heterodyne Doppler lidar. Appl. Opt., 39 , 24412448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Hannon S. M. , and Henderson S. W. , 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor., 86 , 233256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibert, F., Flamant P. H. , Bruneau D. , and Loth C. , 2006: Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer. Appl. Opt., 45 , 44484458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibert, F., Cuesta J. , Yano J.-I. , Arnault N. , and Flamant P. H. , 2007a: On the correlation between convective plume updrafts and downdrafts, lidar reflectivity and depolarization ratio. Bound.-Layer Meteor., 125 , 553573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibert, F., Schmidt M. , Cuesta J. , Ciais P. , Ramonet M. , Xueref I. , Larmanou E. , and Flamant P. H. , 2007b: Retrieval of average CO2 fluxes by combining in situ CO2 measurements and backscatter Lidar information. J. Geophys. Res., 112 , D10301. doi:10.1029/2006JD008190.

    • Search Google Scholar
    • Export Citation
  • Gibert, F., Flamant P. H. , Cuesta J. , and Bruneau D. , 2008: Vertical 2-μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere. J. Atmos. Oceanic Technol., 25 , 14771497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giez, A., Ehret G. , Schwiesow R. L. , Davis K. J. , and Lenschow D. H. , 1999: Water vapor flux measurements from ground-based vertically pointed water vapor differential absorption and Doppler lidars. J. Atmos. Oceanic Technol., 16 , 237250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joly, L., and Coauthors, 2009: Laser diode absorption spectroscopy for accurate CO2 line parameters at 2 μm: Consequences for space-based DIAL measurements and potential biases. Appl. Opt., 48 , 54755483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., Wyngaard J. C. , Haugen D. A. , Coté O. R. , Izumi Y. , Caughey S. J. , and Readings C. J. , 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33 , 21522169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiemle, C., and Coauthors, 2007: Latent heat flux profiles from collocated airborne water vapor and wind lidars during IHOP 2002. J. Atmos. Oceanic Technol., 24 , 627639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, G. J., and Coauthors, 2004: Coherent differential absorption lidar measurements of CO2. Appl. Opt., 43 , 50925099.

  • Koch, G. J., Beyon J. Y. , Barnes B. W. , Petros M. , Yu J. , Amzajerdian F. , Kavaya M. J. , and Singh U. N. , 2007: High-energy 2-μm Doppler lidar for wind measurements. Opt. Eng., 46 , 116201. doi:10.1117/1.2802584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, G. J., and Coauthors, 2008: Side-line tunable transmitter for differential absorption lidar measurements of CO2: Design and application to atmospheric measurements. Appl. Opt., 47 , 944956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristensen, L., Lenschow D. H. , Kirkegaard P. , and Courtney M. , 1989: The spectral velocity tensor for homogeneous boundary-layer turbulence. Bound.-Layer Meteor., 47 , 149193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and Stankov B. , 1986: Length scales in the convective boundary layer. J. Atmos. Sci., 43 , 11981209.

  • Lenschow, D. H., Wyngaard J. C. , and Pennell W. T. , 1980: Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci., 37 , 13131326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lothon, M., Lenschow D. H. , and Mayor S. D. , 2006: Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Bound.-Layer Meteor., 121 , 521536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menut, L., Flamant C. , Pelon J. , and Flamant P. H. , 1999: Urban boundary layer height determination from lidar measurements over the Paris area. Appl. Opt., 38 , 945954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and Wyngaard J. C. , 1984: Statistics of conservative scalars in the convective boundary layer. J. Atmos. Sci., 41 , 31613169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Hardesty R. M. , 1997: Estimate optimization parameters for incoherent backscatter heterodyne lidar. Appl. Opt., 36 , 94259436.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Toth, R. A., Brown L. R. , Miller C. E. , Malathy Devi V. , and Chris Benner D. , 2006: Line strength of 12C16O2: 4550–7000 cm−1. J. Mol. Spectrosc., 239 , 221242.

    • Search Google Scholar
    • Export Citation
  • Toth, R. A., Miller C. E. , Malathy Devi V. , Benner D. C. , and Brown L. R. , 2007: Air-broadened halfwidth and pressure shift coefficients of 12C16O2 bands: 4750–7000 cm−1. J. Mol. Spectrosc., 246 , 133157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vila-Guerau de Arellano, J., Gioli B. , Miglietta F. , Jonker H. J. J. , Baltink H. K. , Hutjes R. W. A. , and Holtslag A. A. M. , 2004: Entrainment process of carbon dioxide in the atmospheric boundary layer. J. Geophys. Res., 109 , D18110. doi:10.1029/2004JD004725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., Davis K. J. , Cook B. D. , Butler M. P. , and Ricciuto D. M. , 2006: Decomposing CO2 fluxes measured over a mixed ecosystem at a tall tower and extending to a region: A case study. J. Geophys. Res., 111 , G02005. doi:10.1029/2005JG000093.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 258 119 12
PDF Downloads 170 64 5