Observational Studies of Atmospheric Aerosols over Bozeman, Montana, Using a Two-Color Lidar, a Water Vapor DIAL, a Solar Radiometer, and a Ground-Based Nephelometer over a 24-h Period

Kevin S. Repasky * Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana

Search for other papers by Kevin S. Repasky in
Current site
Google Scholar
PubMed
Close
,
John A. Reagan Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona

Search for other papers by John A. Reagan in
Current site
Google Scholar
PubMed
Close
,
Amin R. Nehrir * Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana

Search for other papers by Amin R. Nehrir in
Current site
Google Scholar
PubMed
Close
,
David S. Hoffman * Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana

Search for other papers by David S. Hoffman in
Current site
Google Scholar
PubMed
Close
,
Michael J. Thomas * Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana

Search for other papers by Michael J. Thomas in
Current site
Google Scholar
PubMed
Close
,
John L. Carlsten Department of Physics, Montana State University, Bozeman, Montana

Search for other papers by John L. Carlsten in
Current site
Google Scholar
PubMed
Close
,
Joseph A. Shaw * Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana

Search for other papers by Joseph A. Shaw in
Current site
Google Scholar
PubMed
Close
, and
Glenn E. Shaw Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Glenn E. Shaw in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Coordinated observational data of atmospheric aerosols were collected over a 24-h period between 2300 mountain daylight time (MDT) on 27 August 2009 and 2300 MDT on 28 August 2009 at Bozeman, Montana (45.66°N, 111.04°W, elevation 1530 m) using a collocated two-color lidar, a diode-laser-based water vapor differential absorption lidar (DIAL), a solar radiometer, and a ground-based nephelometer. The optical properties and spatial distribution of the atmospheric aerosols were inferred from the observational data collected using the collocated instruments as part of a closure experiment under dry conditions with a relative humidity below 60%. The aerosol lidar ratio and aerosol optical depth retrieved at 532 and 1064 nm using the two-color lidar and solar radiometer agreed with one another to within their individual uncertainties while the scattering component of the aerosol extinction measured using the nephelometer matched the scattering component of the aerosol extinction retrieved using the 532-nm channel of the two-color lidar and the single-scatter albedo retrieved using the solar radiometer. Using existing aerosol models developed with Aerosol Robotic Network (AERONET) data, a thin aerosol layer observed over Bozeman was most likely identified as smoke from forest fires burning in California; Washington; British Columbia, Canada; and northwestern Montana. The intrusion of the thin aerosol layer caused a change in the atmospheric radiative forcing by a factor of 1.8 ± 0.5 due to the aerosol direct effect.

Corresponding author address: Kevin S. Repasky, Dept. of Electrical and Computer Engineering, Cobleigh Hall, Rm. 610, Montana State University, Bozeman, MT 59717. Email: repasky@ece.montana.edu

Abstract

Coordinated observational data of atmospheric aerosols were collected over a 24-h period between 2300 mountain daylight time (MDT) on 27 August 2009 and 2300 MDT on 28 August 2009 at Bozeman, Montana (45.66°N, 111.04°W, elevation 1530 m) using a collocated two-color lidar, a diode-laser-based water vapor differential absorption lidar (DIAL), a solar radiometer, and a ground-based nephelometer. The optical properties and spatial distribution of the atmospheric aerosols were inferred from the observational data collected using the collocated instruments as part of a closure experiment under dry conditions with a relative humidity below 60%. The aerosol lidar ratio and aerosol optical depth retrieved at 532 and 1064 nm using the two-color lidar and solar radiometer agreed with one another to within their individual uncertainties while the scattering component of the aerosol extinction measured using the nephelometer matched the scattering component of the aerosol extinction retrieved using the 532-nm channel of the two-color lidar and the single-scatter albedo retrieved using the solar radiometer. Using existing aerosol models developed with Aerosol Robotic Network (AERONET) data, a thin aerosol layer observed over Bozeman was most likely identified as smoke from forest fires burning in California; Washington; British Columbia, Canada; and northwestern Montana. The intrusion of the thin aerosol layer caused a change in the atmospheric radiative forcing by a factor of 1.8 ± 0.5 due to the aerosol direct effect.

Corresponding author address: Kevin S. Repasky, Dept. of Electrical and Computer Engineering, Cobleigh Hall, Rm. 610, Montana State University, Bozeman, MT 59717. Email: repasky@ece.montana.edu

Save
  • Ackerman, T., and Stokes G. , 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56 , 3845. doi:10.1063/1.1554135.

  • Andrews, E., Sheridan P. J. , Ogren J. A. , and Farrare R. , 2004: In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 1. Aerosol optical properties. J. Geophys. Res., 109 , D06208. doi:10.1029/2003JD004025.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., Ismail S. , and Grossman B. E. , 1991: Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720 nm region. Appl. Opt., 30 , 15171524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattrall, C., Reagan J. , Thome K. , and Dubovik O. , 2005: Variability of aerosol and spectral lidar and backscatter and extinction ratios for key aerosol types derived from selected Aerosol Robotic Network locations. J. Geophys. Res., 110 , D10S11. doi:10.1029/2004JD005124.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., Schwartz S. E. , Hales J. M. , Cess R. D. , Coakley J. A. Jr., Hansen J. E. , and Hofmann D. J. , 1992: Climate forcing by anthropogenic aerosols. Science, 2565 , 423430.

    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., Perry K. D. , Cederwall R. T. , and Ogren J. A. , 2004: In situ aerosol profiles over the Southern Great Plains Cloud and Radiation Testbed site: 2. Effects of mixing height on aerosol properties. J. Geophys. Res., 109 , D06209. doi:10.1029/2003JD004024.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., Holben B. N. , Reid J. S. , Dubovik O. , Smirnov A. , O’Neill N. T. , Slutsker I. , and Kinne S. , 1999: Wavelength dependence of the aerosol optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res., 104 , 3133331349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., 1984: Analysis of atmospheric lidar applications: Some comments. Appl. Opt., 23 , 652653.

  • Fernald, F. G., Herman B. M. , and Reagan J. A. , 1972: Determination of aerosol height distributions by lidar. J. Appl. Meteor., 11 , 482489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrare, R., and Coauthors, 2000: Comparison of aerosol optical properties and water vapor among ground and airborne lidars and sun photometers during TARFOX. J. Geophys. Res., 105 , 99179933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrare, R., Feingold G. , Ghan S. , Ogren J. , Schmid B. , Schwartz S. E. , and Sheridan P. , 2006: Preface to special section: Atmospheric Radiation Measurement Program May 2003 Intensive Operation Period examining aerosol properties and radiative influences. J. Geophys. Res., 111 , D05S01. doi:10.1029/205JD006908.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

    • Search Google Scholar
    • Export Citation
  • Haywood, J., and Boucher O. , 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38 , 513545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J., Francis P. , Dubovik O. , Glew M. , and Holben B. , 2003: Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and sun photometers during SAFARI 2000. J. Geophys. Res., 108 , 8471. doi:10.1029/2002JD002250.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 2001: An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res., 106 , 1206712097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huebert, B. J., Bates T. , Russell P. B. , Shi G. , Kin Y. J. , Kawamura K. , Carmichael G. , and Nakajima T. , 2003: An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climate impacts. J. Geophys. Res., 108 , 8633. doi:10.1029/2003JD003550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ismail, S., Browell E. V. , Farrare R. A. , Kooi S. A. , Clayton M. B. , Brackett V. G. , and Russell P. B. , 2000: LASE measurements of aerosol and water vapor profiles during TARFOX. J. Geophys. Res., 105 , 99039916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, B. T., Christopher S. , Haywood J. M. , Osborne S. R. , MacFarlane S. , Hsu C. , Salustro C. , and Kahn R. , 2009: Measurements of aerosol optical properties from aircraft, satellite, and ground-based remote sensing: A case study from the Dust and Biomass-burning Experiment (DABEX). Quart. J. Roy. Meteor. Soc., 135 , 922934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotchenruther, R. A., Hobbs P. V. , and Hegg D. A. , 1999: Humidification factors for atmospheric aerosols off the mid-Atlantic coast of the United States. J. Geophys. Res., 104 , 22392251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovalev, V. A., and Eichinger W. E. , 2004: Elastic Lidar: Theory, Practice, and Analysis Methods. John Wiley and Sons, 615 pp.

  • Machol, J. L., and Coauthors, 2004: Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor. Appl. Opt., 43 , 31103121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, C. J., and Reagan J. A. , 2010: Analysis of optical properties of Saharan dust derived from dual-wavelength aerosol retrievals from CALIPSO observations. IEEE Geosci. Remote Sens. Lett., 7 , 98102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, C. J., Reagan J. A. , Schafer J. , Giles D. , Ferrare R. , Hair J. , and Hostetler C. , 2010: AERONET, Airborne HSRL, and CALIPSO retrievals compared and combined: A case study. J. Geophys. Res., 115 , D00H21. doi:10.1029/2009JD012389.

    • Search Google Scholar
    • Export Citation
  • Nehrir, A. R., Repasky K. S. , and Carlsten J. L. , 2009a: Design and testing of a compact diode-laser-based differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere. Lidar Remote Sensing for Environmental Monitoring X, U. N. Singh, Ed., International Society for Optical Engineering, (SPIE Proceedings, Vol. 7460), doi:10.1117/12.824900.

    • Search Google Scholar
    • Export Citation
  • Nehrir, A. R., Repasky K. S. , Carlsten J. L. , Obland M. D. , and Shaw J. A. , 2009b: Water vapor profiling using a widely tunable, amplified diode laser based Differential Absorption Lidar (DIAL). J. Atmos. Oceanic Technol., 26 , 733745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omar, A. H., Won J. , Winker D. M. , Yoon S. , Dubovik O. , and McCormick M. P. , 2005: Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res., 110 , D10S14. doi:10.1029/2004JD004874.

    • Search Google Scholar
    • Export Citation
  • Omar, A. H., and Coauthors, 2009: The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26 , 19942014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pahlow, M., Muller D. , Tesche M. , Eichler H. , Feingold G. , Eberhard W. L. , and Cheng Y. , 2006: Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer measurements. Appl. Opt., 45 , 74297442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reagan, J. A., Wang X. , and Osborn M. T. , 2002: Spaceborne lidar calibration from cirrus and molecular backscatter returns. IEEE Trans. Geosci. Remote Sens., 40 , 22852290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reagan, J. A., Wang X. , Cattrall C. , and Thome K. , 2004: Spaceborne lidar aerosol retrieval approaches based on aerosol model Constraints. Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS’04), Anchorage, AK, IEEE, 1940–1943.

    • Search Google Scholar
    • Export Citation
  • Reagan, J. A., Wang X. , Palm S. , and Spinhirne J. , 2006: Lidar aerosol retrievals from Icesat using a model based constrained ratio approach. Preprints, 12th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., 8.1. [Available online at http://ams.confex.com/ams/pdfpapers/113152.pdf].

    • Search Google Scholar
    • Export Citation
  • Reagan, J. A., McPherson C. J. , Hostetler C. A. , Hair J. W. , and Ferrare R. A. , 2007: Initial CRAM aerosol retrievals from CALIPSO and supporting airborne HSRL measurements. Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS’07), Barcelona, Spain, IEEE, 4979–4982.

    • Search Google Scholar
    • Export Citation
  • Schmid, B., and Coauthors, 2003: Column closure studies of lower-tropospheric aerosols and water vapor during ACE-Asia using airborne sun photometer and airborne in situ and ship-based lidar measurements. J. Geophys. Res., 108 , 8656. doi:10.1029/2002JD003361.

    • Search Google Scholar
    • Export Citation
  • Schmid, B., and Coauthors, 2006: How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare? J. Geophys. Res., 111 , D05S07. doi:10.1029/2005JD005837.

    • Search Google Scholar
    • Export Citation
  • Schmid, B., and Coauthors, 2009: Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Program Climate Research Facility measurements. J. Geophys. Res., 114 , D22207. doi:10.1029/2009JD012682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, P. J., Delene D. J. , and Ogren J. A. , 2001: Four years of continuous surface aerosol measurements from the Department of Energy’s Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed site. J. Geophys. Res., 106 , 2073520747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation testbed. Bull. Amer. Meteor. Soc., 75 , 12011221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., Reagan J. , Cattrall C. , and Thome K. , 2005: Spaceborne lidar aerosol retrieval approaches based on improved aerosol model constraints. Proc. IEEE Workshop on Remote Sensing of Atmospheric Aerosols, Tuscon, AZ, IEEE, 36–42.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Feingold G. , 2000: On the relationship between relative humidity and particle backscatter coefficient in the marine boundary layer determined with differential absorption lidar. J. Geophys. Res., 105 , 47294741.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 156 79 2
PDF Downloads 73 29 3