A New Dual-Polarization Radar Rainfall Algorithm: Application in Colorado Precipitation Events

R. Cifelli National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by R. Cifelli in
Current site
Google Scholar
PubMed
Close
,
V. Chandrasekar Department of Computer and Electrical Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by V. Chandrasekar in
Current site
Google Scholar
PubMed
Close
,
S. Lim Department of Computer and Electrical Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by S. Lim in
Current site
Google Scholar
PubMed
Close
,
P. C. Kennedy Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by P. C. Kennedy in
Current site
Google Scholar
PubMed
Close
,
Y. Wang Department of Computer and Electrical Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by Y. Wang in
Current site
Google Scholar
PubMed
Close
, and
S. A. Rutledge Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by S. A. Rutledge in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The efficacy of dual-polarization radar for quantitative precipitation estimation (QPE) has been demonstrated in a number of previous studies. Specifically, rainfall retrievals using combinations of reflectivity (Zh), differential reflectivity (Zdr), and specific differential phase (Kdp) have advantages over traditional ZR methods because more information about the drop size distribution (DSD) and hydrometeor type are available. In addition, dual-polarization-based rain-rate estimators can better account for the presence of ice in the sampling volume.

An important issue in dual-polarization rainfall estimation is determining which method to employ for a given set of polarimetric observables. For example, under what circumstances does differential phase information provide superior rain estimates relative to methods using reflectivity and differential reflectivity? At Colorado State University (CSU), an optimization algorithm has been developed and used for a number of years to estimate rainfall based on thresholds of Zh, Zdr, and Kdp. Although the algorithm has demonstrated robust performance in both tropical and midlatitude environments, results have shown that the retrieval is sensitive to the selection of the fixed thresholds.

In this study, a new rainfall algorithm is developed using hydrometeor identification (HID) to guide the choice of the particular rainfall estimation algorithm. A separate HID algorithm has been developed primarily to guide the rainfall application with the hydrometeor classes, namely, all rain, mixed precipitation, and all ice.

Both the data collected from the S-band Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) radar and a network of rain gauges are used to evaluate the performance of the new algorithm in mixed rain and hail in Colorado. The evaluation is also performed using an algorithm similar to the one developed for the Joint Polarization Experiment (JPOLE). Results show that the new CSU HID-based algorithm provides good performance for the Colorado case studies presented here.

Corresponding author address: Robert Cifelli, R/PSD2, 325 Broadway, Boulder, CO 80305. Email: rob.cifelli@noaa.gov

Abstract

The efficacy of dual-polarization radar for quantitative precipitation estimation (QPE) has been demonstrated in a number of previous studies. Specifically, rainfall retrievals using combinations of reflectivity (Zh), differential reflectivity (Zdr), and specific differential phase (Kdp) have advantages over traditional ZR methods because more information about the drop size distribution (DSD) and hydrometeor type are available. In addition, dual-polarization-based rain-rate estimators can better account for the presence of ice in the sampling volume.

An important issue in dual-polarization rainfall estimation is determining which method to employ for a given set of polarimetric observables. For example, under what circumstances does differential phase information provide superior rain estimates relative to methods using reflectivity and differential reflectivity? At Colorado State University (CSU), an optimization algorithm has been developed and used for a number of years to estimate rainfall based on thresholds of Zh, Zdr, and Kdp. Although the algorithm has demonstrated robust performance in both tropical and midlatitude environments, results have shown that the retrieval is sensitive to the selection of the fixed thresholds.

In this study, a new rainfall algorithm is developed using hydrometeor identification (HID) to guide the choice of the particular rainfall estimation algorithm. A separate HID algorithm has been developed primarily to guide the rainfall application with the hydrometeor classes, namely, all rain, mixed precipitation, and all ice.

Both the data collected from the S-band Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) radar and a network of rain gauges are used to evaluate the performance of the new algorithm in mixed rain and hail in Colorado. The evaluation is also performed using an algorithm similar to the one developed for the Joint Polarization Experiment (JPOLE). Results show that the new CSU HID-based algorithm provides good performance for the Colorado case studies presented here.

Corresponding author address: Robert Cifelli, R/PSD2, 325 Broadway, Boulder, CO 80305. Email: rob.cifelli@noaa.gov

Save
  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115 , 10531070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldini, L., Gorgucci E. , Chandrasekar V. , and Peterson W. , 2005: Implementations of CSU hydrometeor classification scheme for C-band polarimetric radars. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P11R.4. [Available online at http://ams.confex.com/ams/pdfpapers/95865.pdf].

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and Chuang C. , 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44 , 15091524.

  • Brandes, E. A., Ryzhkov A. V. , and Zrnić D. S. , 2001: An evaluation of radar rainfall estimates from specific differential phase. J. Atmos. Oceanic Technol., 18 , 363375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 635 pp.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Liu L. , Kennedy P. C. , Chandrasekar V. , and Rutledge S. A. , 1996: Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor. Atmos. Phys., 59 , 331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and Rutledge S. A. , 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103 , 1397914000.

  • Chandrasekar, V., and Bringi V. N. , 1988: Error structure of multiparameter radar and surface measurements of rainfall. Part I: Differential reflectivity. J. Atmos. Oceanic Technol., 5 , 783795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., Bringi V. , Balakrishnan N. , and Zrnić D. S. , 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Oceanic Technol., 7 , 621629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., Gorgucci E. , and Scarchilli G. , 1993: Optimization of multiparameter radar estimates of rainfall. J. Appl. Meteor., 32 , 12881293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifelli, R., Petersen W. A. , Carey L. D. , and Rutledge S. A. , 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res., 107 , 8077. doi:10.1029/2000JD000264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifelli, R., and Coauthors, 2003: Evaluation of an operational polarimetric rainfall algorithm. Preprints, 31st Int. Conf. on Radar Meteor., Seattle, WA, Amer. Meteor. Soc., P2B.14. [Available online at http://ams.confex.com/ams/pdfpapers/63992.pdf].

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., Kennedy P. C. , Chandrasekar V. , Nesbitt S. , Rutledge S. A. , and Carey L. , 2005: Polarimetric rainfall retrievals using blended algorithms. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 9R.1. [Available online at http://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96556.htm].

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., Knight C. A. , Toutenhoofd V. , and Cannon T. W. , 1974: The mechanism of precipitation formation in northeastern Colorado Cumulus III. Coordinated microphysical and radar observations and summary. J. Atmos. Sci., 31 , 21522159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., Bellon A. , Duncan M. R. , and Austin G. L. , 1994: High-resolution rainfall measurements by radar for very small basins: The sampling problem revisited. J. Hydrol., 161 , 415428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., Breidenbach J. P. , Seo D. J. , Miller D. A. , and O’Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and Ryzhkov A. V. , 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47 , 24452462. Corrigendum, 48, 690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golestani, Y., Chandrasekar V. , and Bringi V. N. , 1989: Intercomparison of multiparameter radar measurements. Proc. 24th Conf. on Radar Meteorology, Boston, MA, Amer. Meteor. Soc., 309–314.

    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., English E. J. , and Nicholass C. A. , 1974: The accuracy of radar-derived rainfall measurements in hilly terrain. Quart. J. Roy. Meteor. Soc., 100 , 331350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1991: A comparison of microwave techniques for measuring rainfall. J. Appl. Meteor., 30 , 3254.

  • Joss, J., and Waldvogel A. , 1990: Precipitation measurement and hydrology. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 577–606.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and Lee R. , 1995: The application of radar–gauge comparisons to operational precipitation profile corrections. J. Appl. Meteor., 34 , 26122630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keranen, R., Saltikoff E. , Chandrasekar V. , Lim S. , Holmes J. , and Selzler J. , 2007: Real-time hydrometeor classification for the operational forecasting environment. Preprints, 33rd Conf. on Radar Meteorology, Cairns, QLD, Australia, Amer. Meteor. Soc., P11B.11. [Available online at http://ams.confex.com/ams/pdfpapers/123476.pdf].

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., and Jackson P. M. , 1993: Weather radar performance at long range—Simulated and observed. J. Appl. Meteor., 32 , 975985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, S., Chandrasekar V. , and Bringi V. N. , 2005: Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens., 43 , 792801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and Chandrasekar V. , 1998: Classification of hydrometeor type based on multiparameter radar measurements. Preprints, Int. Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 253–256.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and Chandrasekar V. , 2000: Classification of hydrometeor based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17 , 140164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., and Vaughan R. L. , 1979: An economical procedure for Cartesian interpolation and display of reflectivity factor data in three-dimensional space. J. Appl. Meteor., 18 , 661670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 1999: Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80 , 191216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and Heymsfield A. J. , 1987: Melting and shedding of graupel and hail. Part II: Sensitivity study. J. Atmos. Sci., 44 , 27642782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and Zrnić D. , 1995: Precipitation and attenuation measurements at a 10-cm wavelength. J. Appl. Meteor., 34 , 21212134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., Giangrande S. E. , and Schuur T. J. , 2005a: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44 , 502515.

  • Ryzhkov, A., Schuur T. J. , Burgess D. W. , Heinselman P. L. , Giangrande S. E. , and Zrnić D. S. , 2005b: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86 , 809824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and Zrnić D. S. , 1987: Rain-rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol., 4 , 588598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1996: Adjustment of tipping-bucket precipitation gauge measurements. Atmos. Res., 42 , 237246.

  • Silvestro, F., Rebora N. , and Ferraris L. , 2009: An algorithm for real-time rainfall rate estimation by using polarimetric radar: RIME. J. Hydrometeor., 10 , 227240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Ellis S. M. , Oye R. , Zrnić D. S. , Ryzhkov A. , and Straka J. M. , 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80 , 381388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Chandrasekar V. , 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26 , 25652578.

  • Wilson, J. W., and Brandes E. A. , 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc., 60 , 10481058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., 1984: Factors affecting the precision of radar measurements of rain. Preprints, 22nd Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 251–256.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Ryzhkov A. , 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13 , 454464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., Ryzhkov A. , Straka J. , Liu Y. , and Vivekanandan J. , 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18 , 892913.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1579 624 159
PDF Downloads 1135 445 119