Incorporating Ice Crystal Scattering Databases in the Simulation of Millimeter-Wavelength Radar Reflectivity

Andrew L. Molthan Earth Science Office, NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Andrew L. Molthan in
Current site
Google Scholar
PubMed
Close
and
Walter A. Petersen Earth Science Office, NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Walter A. Petersen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Canadian CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Validation Project (C3VP) was designed to acquire aircraft, surface, and satellite observations of particle size distributions during cold season precipitation events for the purposes of validating and improving upon satellite-based retrievals of precipitation and the representation of cloud and precipitation processes within numerical weather prediction schemes. During an intensive observation period on 22 January 2007, an instrumented aircraft measured ice crystal size distributions, ice and liquid water contents, and atmospheric state parameters within a broad shield of precipitation generated by a passing midlatitude cyclone. The 94-GHz CloudSat radar acquired vertical profiles of radar reflectivity within light to moderate snowfall, coincident with C3VP surface and aircraft instrumentation. Satellite-based retrievals of cold season precipitation require relationships between remotely sensed quantities, such as radar reflectivity or brightness temperature, and the ice water content present within the sampled profile.

In this study, three methods for simulating CloudSat radar reflectivity are investigated by comparing Mie spheres, single dendrites, and fractal aggregates represented within scattering databases or parameterizations. It is demonstrated that calculations of radar backscatter from nonspherical crystal shapes are required to represent the vertical trend in CloudSat radar reflectivity for this particular event, as Mie resonance effects reduce the radar backscatter from precipitation-sized particles larger than 1 mm. Remaining differences between reflectivity from nonspherical shapes and observations are attributed to uncertainty in the mass–diameter relationships for observed crystals and disparities between naturally occurring crystals and shapes assumed in the development of ice crystal scattering databases and parameterizations.

Corresponding author address: Andrew Molthan, NASA Marshall Space Flight Center, 320 Sparkman Dr., Huntsville, AL 35802. Email: andrew.molthan@nasa.gov

Abstract

The Canadian CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Validation Project (C3VP) was designed to acquire aircraft, surface, and satellite observations of particle size distributions during cold season precipitation events for the purposes of validating and improving upon satellite-based retrievals of precipitation and the representation of cloud and precipitation processes within numerical weather prediction schemes. During an intensive observation period on 22 January 2007, an instrumented aircraft measured ice crystal size distributions, ice and liquid water contents, and atmospheric state parameters within a broad shield of precipitation generated by a passing midlatitude cyclone. The 94-GHz CloudSat radar acquired vertical profiles of radar reflectivity within light to moderate snowfall, coincident with C3VP surface and aircraft instrumentation. Satellite-based retrievals of cold season precipitation require relationships between remotely sensed quantities, such as radar reflectivity or brightness temperature, and the ice water content present within the sampled profile.

In this study, three methods for simulating CloudSat radar reflectivity are investigated by comparing Mie spheres, single dendrites, and fractal aggregates represented within scattering databases or parameterizations. It is demonstrated that calculations of radar backscatter from nonspherical crystal shapes are required to represent the vertical trend in CloudSat radar reflectivity for this particular event, as Mie resonance effects reduce the radar backscatter from precipitation-sized particles larger than 1 mm. Remaining differences between reflectivity from nonspherical shapes and observations are attributed to uncertainty in the mass–diameter relationships for observed crystals and disparities between naturally occurring crystals and shapes assumed in the development of ice crystal scattering databases and parameterizations.

Corresponding author address: Andrew Molthan, NASA Marshall Space Flight Center, 320 Sparkman Dr., Huntsville, AL 35802. Email: andrew.molthan@nasa.gov

Save
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2007: Evaluation of radar multiple scattering effects in the Cloudsat configuration. Atmos. Chem. Phys., 7 , 17191730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., and Schluessel P. , 1993: Rainfall, total water, ice water, and water vapor over sea from polarized microwave simulations and Special Sensor/Microwave Imager data. J. Geophys. Res., 98 , 2073720759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Botta, G., Aydin K. , and Verlinde J. , 2010: Modeling of microwave scattering from cloud ice crystal aggregates and melting aggregates: A new approach. IEEE Geosci. Remote Sens. Lett., 7 , 572576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Heymsfield A. J. , 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60 , 544560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., and Marshall J. S. , 1958: The distribution with size of aggregate snowflakes. J. Atmos. Sci., 15 , 452461.

  • Heymsfield, A. J., Bansemer A. , Field P. , Durden S. , Stith J. , Dye J. , Hall W. , and Grainger T. , 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59 , 34573491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Bansemer A. , Schmitt C. , Twohy C. , and Poellot M. , 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61 , 9821003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Wang Z. , and Matrosov S. , 2005: Improved radar ice water content retrieval algorithms using coincident microphysical and radar measurements. J. Appl. Meteor. Climatol., 44 , 13911412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Bansemer A. , and Twohy C. H. , 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64 , 10471067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Dudhia J. , and Chen S.-H. , 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132 , 103120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudak, D., Rodriguez P. , and Donaldson N. , 2008: Validation of the CloudSat precipitation occurrence algorithm using the Canadian C-band radar network. J. Geophys. Res., 113 , D00A07. doi:10.1029/2008JD009992.

    • Search Google Scholar
    • Export Citation
  • Ishimoto, H., 2008: Radar backscattering computations for fractal-shaped snowflakes. J. Meteor. Soc. Japan, 86 , 459469.

  • Lhermitte, R., 1990: Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Oceanic Technol., 7 , 464479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., Farley R. D. , and Orville H. D. , 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., 2004: Approximation of single-scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61 , 24412456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008a: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89 , 15631570.

  • Liu, G., 2008b: Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res., 113 , D00A09. doi:10.1029/2007JD009766.

    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and Passarelli R. E. J. , 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39 , 697706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., Haynes J. , Mace G. G. , Ackerman T. , and Stephens G. L. , 2008: Comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations. J. Geophys. Res., 114 , D00A20. doi:10.1029/2008JD009790.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and Kummerow C. D. , 2005: Combined radar and radiometer analysis of precipitation profiles for a parametric retrieval algorithm. J. Atmos. Oceanic Technol., 22 , 909929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and Battaglia A. , 2009: Influence of multiple scattering on CloudSat measurements in snow: A model study. J. Geophys. Res., 36 , L12806. doi:10.1029/2009GL038704.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., Zeng X. , Tao W.-K. , Masunaga H. , Olson W. , and Lang S. , 2009: Evaluation of long-term cloud-resolving model simulations using satellite radiance observations and multifrequency satellite simulators. J. Atmos. Oceanic Technol., 26 , 12611274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., Petersen W. A. , Nesbitt S. W. , and Hudak D. , 2010: Evaluating the snow crystal size distribution and density assumptions within a single-moment microphysics scheme. Mon. Wea. Rev., 138 , 42544267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, W. S., Bauer P. , Viltard N. F. , Johnson D. E. , Tao W.-K. , Meneghini R. , and Liao L. , 2001: A melting-layer model for passive/active microwave remote sensing applications. Part II: Simulation of TRMM observations. J. Appl. Meteor., 40 , 11451163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 2007: NASA GPM/PMM participation in the Canadian Cloudsat/CALIPSO validation project C3VP: Physical process studies in snow. Preprints, 33rd Int. Conf. on Radar Meteorology, Cairns, QLD, Australia, Amer. Meteor. Soc., P12A.8. [Available online at http://ams.confex.com/ams/pdfpapers/123652.pdf].

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and Klett J. D. , 1978: Microphysics of Clouds and Precipitation. D. Reidel, 714 pp.

  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49 , 22462266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83 , 17711790.

  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113 , D00A18. doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82 , 97137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., Schanot A. J. , and Cooper W. A. , 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14 , 197202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., Ball R. C. , Field P. R. , and Heymsfield A. J. , 2004: Universality in snowflake aggregation. Geophys. Res. Lett., 31 , L15104. doi:10.1029/2004GL020363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S., and Houze R. , 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123 , 19411963.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 399 79 6
PDF Downloads 143 17 1