A Note on the Ocean Surface Roughness Spectrum

Paul A. Hwang Remote Sensing Division, Naval Research Laboratory, Washington, D.C

Search for other papers by Paul A. Hwang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In a recent study, the dimensionless surface roughness spectrum has been empirically parameterized as a power-law function of the dimensionless wind speed expressed as the ratio of wind friction velocity and phase speed of the surface roughness wave component. The wave-number-dependent proportionality coefficient, A, and exponent, a, of the power-law function are derived from field measurements of the short-wave spectrum. To extend the roughness spectrum model beyond the wavenumber range of field data, analytical functions are formulated such that A and a approach their asymptotic limits: A0 and a0 toward the lowest wavenumber, and A and a toward the highest wavenumber. Of the four asymptotic values, A is considered most questionable for the lack of reference information. When applied to the normalized radar cross-section (NRCS) computation, the results are in good agreement (within about 2 dB) with field data or geophysical model functions (GMFs) for incidence angles between 20° and 40° but significant underestimation occurs for higher incidence angles. The comparison study of NRCS computation offers helpful guidelines for adjusting the asymptotic factors, especially the numerical value of A. Improved agreement between the computed NRCS (vertical polarization) using the new roughness spectrum with GMF is expanded to incidence angles between 20° and 60°. The wind speed range of good agreement between calculation and GMF is below about 15 m s−1 for Ku band and about 30 m s−1 for C band.

Corresponding author address: Paul A. Hwang, Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375. Email: paul.hwang@nrl.navy.mil

* Naval Research Laboratory Contribution Number NRL/JA-7260-11-0007.

Abstract

In a recent study, the dimensionless surface roughness spectrum has been empirically parameterized as a power-law function of the dimensionless wind speed expressed as the ratio of wind friction velocity and phase speed of the surface roughness wave component. The wave-number-dependent proportionality coefficient, A, and exponent, a, of the power-law function are derived from field measurements of the short-wave spectrum. To extend the roughness spectrum model beyond the wavenumber range of field data, analytical functions are formulated such that A and a approach their asymptotic limits: A0 and a0 toward the lowest wavenumber, and A and a toward the highest wavenumber. Of the four asymptotic values, A is considered most questionable for the lack of reference information. When applied to the normalized radar cross-section (NRCS) computation, the results are in good agreement (within about 2 dB) with field data or geophysical model functions (GMFs) for incidence angles between 20° and 40° but significant underestimation occurs for higher incidence angles. The comparison study of NRCS computation offers helpful guidelines for adjusting the asymptotic factors, especially the numerical value of A. Improved agreement between the computed NRCS (vertical polarization) using the new roughness spectrum with GMF is expanded to incidence angles between 20° and 60°. The wind speed range of good agreement between calculation and GMF is below about 15 m s−1 for Ku band and about 30 m s−1 for C band.

Corresponding author address: Paul A. Hwang, Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375. Email: paul.hwang@nrl.navy.mil

* Naval Research Laboratory Contribution Number NRL/JA-7260-11-0007.

Save
  • Cox, C. S., and Munk W. , 1954: Statistics of the sea surface derived from sun glitter. J. Mar. Res., 13 , 198227.

  • Crombie, D. D., 1955: Doppler spectrum of sea echo at 13-56 Mc./s. Nature, 175 , 681682.

  • Geernaert, G. L., and Plant W. J. , 1990: Surface Waves and Fluxes. Vol. 2, Remote Sensing, Kluwer Academic Publications, 372 pp.

  • Hauser, D., Caudal G. , Guimbard S. , and Mouche A. A. , 2008: A study of the slope probability density function of the ocean waves from radar observations. J. Geophys. Res., 113 , C02006. doi:10.1029/2007JC004264.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., Stoffelen A. , and de Haan S. , 2007: An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res., 112 , C03006. doi:10.1029/2006JC003743.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 1997: A study of the wavenumber spectra of short water waves in the ocean. Part II: Spectral model and mean square slope. J. Atmos. Oceanic Technol., 14 , 11741186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2005: Wave number spectrum and mean-square slope of intermediate-scale ocean surface waves. J. Geophys. Res., 110 , C10029. doi:10.1029/2005JC003002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2007: Spectral signature of wave breaking in surface wave components of intermediate length scale. J. Mar. Syst., 66 , 2837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2008: Observations of swell influence on ocean surface roughness. J. Geophys. Res., 113 , C12024. doi:10.1029/2008JC005075.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and Wang D. W. , 2004: An empirical investigation of source term balance of small scale surface waves. Geophys. Res. Lett., 31 , L15301. doi:10.1029/2004GL020080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and Plant W. J. , 2010: An analysis of the effects of swell and roughness spectra on microwave backscatter from the ocean. J. Geophys. Res., 115 , C04014. doi:10.1029/2009JC005558.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., Zhang B. , Toporkov J. V. , and Perrie W. , 2010: Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2: With applications to wave breaking and high wind retrieval. J. Geophys. Res., 115 , C08019. doi:10.1029/2009JC005995.

    • Search Google Scholar
    • Export Citation
  • Jackson, F. C., Walton W. T. , Hines D. E. , Walter B. A. , and Peng C. Y. , 1992: Sea surface mean-square slope from Ku-band backscatter data. J. Geophys. Res., 97 , 1141111427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarosz, E., Mitchell D. A. , Wang D. W. , and Teague W. J. , 2007: Bottom-up determination of air–sea momentum exchange under a major tropical cyclone. Science, 315 , 17071709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, W. L., Schroeder L. C. , and Mitchell K. L. , 1977: Aircraft measurements of the microwave scattering signature of the ocean. J. Ocean. Eng., 2 , 5261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGoldrick, L. F., 1965: Resonant interactions among capillary-gravity waves. J. Fluid Mech., 21 , 305332.

  • McGoldrick, L. F., 1970: An experiment on second-order capillary gravity resonant wave interactions. J. Fluid Mech., 40 , 251271.

  • Phillips, O. M., 1984: On the response of short ocean wave components at a fixed wavenumber to ocean current variations. J. Phys. Oceanogr., 14 , 14251433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156 , 505531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1988: Radar returns from the sea surface—Bragg scattering and breaking waves. J. Phys. Oceanogr., 18 , 10651074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1990: Bragg scattering of electromagnetic waves from the air/sea interface. Surface Waves and Fluxes. Vol. 2. Remote Sensing, G. L. Geernaert and W. J. Plant, Eds., Kluwer Academic, 41–108.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 2002: A stochastic, multiscale model of microwave backscatter from the ocean. J. Geophys. Res., 107 , C93120. doi:10.1029/2001JC000909.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., Keller W. C. , Hayes K. , and Chatham G. , 2010: Normalized radar cross section of the sea for backscatter: 1. Mean levels. J. Geophys. Res., 115 , C09032. doi:10.1029/2009JC006078.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., Vickery P. J. , and Reinhold T. A. , 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422 , 279283.

  • Simmons, W. F., 1967: A variational method for weak resonant wave interactions. Proc. Roy. Soc. London, 309A , 551579.

  • Trokhimovski, Y. G., and Irisov V. G. , 2000: The analysis of wind exponents retrieved from microwave radar and radiometric measurements. IEEE Trans. Geosci. Remote Sens., 38 , 470479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valenzuela, G. R., 1978: Theories for the interaction of electromagnetic and oceanic waves—A review. Bound.-Layer Meteor., 13 , 6185.

  • Vandemark, D., Chapron B. , Sun J. , Crescenti G. H. , and Graber H. C. , 2004: Ocean wave slope observations using radar backscatter and laser altimeters. J. Phys. Oceanogr., 34 , 28252842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., Vandemark D. C. , Friehe C. A. , Burns S. P. , Khelif D. , Swift R. N. , and Scott J. F. , 1998: Measuring sea surface mean square slope with a 36-GHz scanning radar altimeter. J. Geophys. Res., 103 , 1258712601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1976: Cox and Munk’s sea surface slope variance. J. Geophys. Res., 81 , 16071608.

  • Wentz, F. J., 1977: A two scale scattering model with application to the JONSWAP ’75 aircraft microwave scatterometer experiment. NASA Contract Rep. 2919, 122 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 828 355 22
PDF Downloads 569 184 7