• Alley, R. B., 1995: Resolved: The Arctic controls global climate change. Arctic Oceanography: Marginal Ice Zones and Continental Shelves, W. O. Smith and J. M. Grebmeier, Eds., Coastal and Estuarine Studies, Vol. 49, Amer. Geophys. Union, 263–283.

    • Search Google Scholar
    • Export Citation
  • Arzel, O., , Fichefet T. , , and Goosse H. , 2006: Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Modell., 12, 401415.

    • Search Google Scholar
    • Export Citation
  • Baker, B. A., , and Lawson R. P. , 2006a: In situ observations of the microphysical properties of wave, cirrus and anvil clouds. Part I: Wave clouds. J. Atmos. Sci., 63, 31603185.

    • Search Google Scholar
    • Export Citation
  • Baker, B. A., , and Lawson R. P. , 2006b: Improvement in determination of ice water content from two-dimensional particle imagery: Part I: Image to mass relationships. J. Appl. Meteor. Climatol., 45, 12821290.

    • Search Google Scholar
    • Export Citation
  • Baker, B. A., , Korolev A. , , Lawson R. P. , , O’Connor D. , , and Mo Q. , 2009: Drop size distributions and the lack of small drops in RICO rain shafts. J. Appl. Meteor. Climatol., 48, 616623.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., , Jensen M. L. , , and Frehlich R. G. , 1998: The use of state-of-the-art kites for profiling the lower atmosphere. Bound.-Layer Meteor., 87, 125.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., , and Korolev A. , 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14, 12241229.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., , Dye J. E. , , Knollenberg R. G. , , and Gandrud B. W. , 1992: Interpretation of measurements made by the Forward Scattering Spectrometer Probe (FSSP-300X) during the Airborne Arctic Stratospheric Expedition. J. Geophys. Res., 97, 80358046.

    • Search Google Scholar
    • Export Citation
  • Borys, R. D., , Stamnes K. , , Storvold R. , , and Lawson P. , 1999: Development and deployment of a powered tethered balloon system at the SHEBA ice camp for measurements of cloud micro-physical and radiative properties. Proc. of the Arctic Forum 1999, Fairbanks, AK, Arctic Research Consortium of the United States.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., , Bourrianne T. , , de Araujo Coelho A. , , Isbert J. , , Peytavi R. , , Trevarin D. , , and Wechsler P. , 1998: Improvements of droplet size distribution measurements with the fast-FSSP. J. Atmos. Oceanic Technol., 15, 10771090.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., , Hlavka D. L. , , Welton E. J. , , Flynn C. J. , , Turner D. D. , , Spinhirne J. D. , , Scott V. S. , , and Hwang I. H. , 2002: Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instrument and data processing. J. Atmos. Oceanic Technol., 19, 431442.

    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., , and Walsh J. E. , 1993: Recent variations of sea ice and air temperatures in high latitudes. Bull. Amer. Meteor. Soc., 74, 3347.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , Francis J. A. , , and Miller J. R. , 2002: Surface temperature of the Arctic: Comparison of TOVS satellite retrievals with surface observations. J. Climate, 15, 36983708.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., , and Ebert E. E. , 1992: Annual cycle of radiative fluxes over the Arctic Ocean: Sensitivity to cloud optical properties. J. Climate, 5, 12671280.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and Rotunno R. , 1989: Polar lows as arctic hurricanes. Tellus, 41A, 117.

  • Field, P. R., , Wood R. , , Brown P. R. A. , , Kaye P. H. , , Hirst E. , , Greenaway R. , , and Smith J. A. , 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20, 249261.

    • Search Google Scholar
    • Export Citation
  • Grønås, S., , and Skeie P. , 1999: A case study of strong winds at an Arctic front. Tellus, 51A, 865879.

  • Heymsfield, A. J., , and Miloshevich L. M. , 1995: Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II. J. Atmos. Sci., 52, 43024326.

    • Search Google Scholar
    • Export Citation
  • Hogan, R., , Francis P. , , Flentje H. , , Hollingsworth A. , , Quante M. , , and Pelon J. , 2003: Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE ’98. Quart. J. Roy. Meteor. Soc., 129, 20892116.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , and Bitz C. M. , 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232.

  • Houghton, J. T., , Ding Y. , , Noguer M. , , van der Linden P. J. , , Dai X. , , Maskell K. , , and Johnson C. A. , 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., , Fairall C. , , Shupe M. , , Persson P. , , Andreas E. , , Guest P. , , and Moritz R. , 2002a: Annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res., 107, 8039, doi:10.1029/2000JC000439.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., , Shupe M. D. , , Uttal T. , , and McCarty B. J. , 2002b: Annual cycle of Arctic cloud geometry and phase from radar and lidar at SHEBA. J. Geophys. Res., 107, 8030, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , and Isaac G. A. , 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808.

  • Korolev, A. V., , and Isaac G. A. , 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Oceanic Technol., 22, 528542.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , Isaac G. A. , , and Hallett J. , 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 12991302.

  • Lawson, R. P., , and Zuidema P. , 2009: Aircraft microphysical and surface-based radar observations. J. Atmos. Sci., 66, 35053529.

  • Lawson, R. P., , Baker B. A. , , Schmitt C. G. , , and Jensen T. L. , 2001: An overview of microphysical properties of Arctic clouds observed in May and July during FIRE ACE. J. Geophys. Res., 106, 14 98915 014.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , Baker B. A. , , Zmarzly P. , , O’Connor D. , , Mo Q. , , Gayet J.-F. , , and Shcherbakov V. , 2006: Microphysical and optical properties of ice crystals at South Pole Station. J. Appl. Meteor. Climatol., 45, 15051524.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , and Washington W. M. , 1990: CO2 climate sensitivity and snow-sea-ice albedo parameterization in an atmospheric GCM coupled to a mixed layer ocean model. Climatic Change, 16, 283306.

    • Search Google Scholar
    • Export Citation
  • Ono, A., 1969: The shape and riming properties of ice crystals in natural clouds. J. Atmos. Sci., 26, 138147.

  • Orikasa, N., , and Murakami M. , 1997: A new version of hydrometeor videosonde for cirrus cloud observations. J. Meteor. Soc. Japan, 75, 10331039.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and Klett J. D. , 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954 pp.

  • Rangno, A. L., , and Hobbs P. V. , 1983: Production of ice particles in clouds due to aircraft penetrations. J. Climate Appl. Meteor., 22, 214232.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., , Yu Y. , , and Maykut G. A. , 1999: Thinning of the arctic ice cover. Geophys. Res. Lett., 26, 34693472.

  • Schweiger, A., , and Key J. R. , 1994: Arctic Ocean radiative fluxes and cloud forcing estimates from the ISCCP C2 cloud dataset. J. Appl. Meteor., 33, 948963.

    • Search Google Scholar
    • Export Citation
  • Serreze, M., and Coauthors, 2000: Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46, 159207.

    • Search Google Scholar
    • Export Citation
  • Sikand, M., , Koskulics J. , , Stamnes K. , , Hamre B. , , Stamnes J. J. , , and Lawson R. P. , 2010: Optical properties of mixed phase boundary layer clouds observed from a tethered balloon platform in the Arctic. J. Quant. Spectrosc. Radiat. Transfer, 111, 19211930.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., , Rall R. , , and Scott V. S. , 1995: Compact eye-safe lidar systems. Rev. Laser Eng., 23, 112118.

  • Stamnes, K., , and Storvold R. , 1999: Development and deployment of a powered tethered balloon system at the SHEBA ice camp for measurements of cloud microphysical and radiative properties. Proc. of the Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio, TX, ARM, 1–7.

    • Search Google Scholar
    • Export Citation
  • Stone, R., 1997: Variations in western arctic temperature in response to cloud radiative and synoptic-scale influences. J. Geophys. Res., 102, 21 76921 776.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., , and Shine K. , 1994: Studies of the radiative properties of ice and mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 120, 111137.

    • Search Google Scholar
    • Export Citation
  • Tsay, S.-C., , Stamnes K. , , and Jayaweera K. , 1989: Radiative energy budget in the cloudy and hazy Arctic. J. Atmos. Sci., 46, 10021018.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S. J., 2004: The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J. Climate, 17, 603615.

  • Vinnikov, K. Y., and Coauthors, 1999: Global warming and Northern Hemisphere sea ice extent. Science, 286, 19341937.

  • Vömel, H., , David D. E. , , and Smith K. , 2007: Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations. J. Geophys. Res., 112, D08305, doi:10.1029/2006JD007224.

    • Search Google Scholar
    • Export Citation
  • Walden, V. P., , Ellison M. E. , , Brandt R. E. , , Town M. S. , , Hudson S. R. , , and Jones R. M. , 2005: Properties of super-cooled water clouds over South Pole. Preprints, Eighth Conf. on Polar Meteorology and Oceanography, San Diego, CA, Amer. Meteor. Soc., 6.1. [Available online at http://ams.confex.com/ams/pdfpapers/87694.pdf.]

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., , and Chapman W. L. , 1998: Arctic cloud–radiation–temperature associations in observational data and atmospheric reanalyses. J. Climate, 11, 30303045.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., , Vavrus S. J. , , and Chapman W. L. , 2005: Workshop on modeling of the Arctic atmosphere. Bull. Amer. Meteor. Soc., 86, 845852.

    • Search Google Scholar
    • Export Citation
  • Welton, E. J., , and Campbell J. R. , 2002: Micropulse lidar signals: Uncertainty analysis. J. Atmos. Oceanic Technol., 19, 20892094.

  • Zhang, T., , Bowling S. A. , , and Stamnes K. , 1997: Impact of the atmosphere on surface radiative fluxes and snow melt in the Arctic and subarctic. J. Geophys. Res., 102, 42874302.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2004: An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA. J. Atmos. Sci., 62, 160176.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 3
PDF Downloads 45 45 3

Deployment of a Tethered-Balloon System for Microphysics and Radiative Measurements in Mixed-Phase Clouds at Ny-Ålesund and South Pole

View More View Less
  • 1 SPEC, Inc., Boulder, Colorado
  • | 2 Stevens Institute of Technology, Hoboken, New Jersey
  • | 3 University of Bergen, Bergen, Norway
  • | 4 Wallops Flight Facility, NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

A tethered-balloon system capable of making microphysical and radiative measurements in clouds is described and examples of measurements in boundary layer stratus clouds in the Arctic and at the South Pole are presented. A 43-m3 helium-filled balloon lofts an instrument package that is powered by two copper conductors in the tether. The instrument package can support several instruments, including, but not limited to, a cloud particle imager; a forward-scattering spectrometer probe; temperature, pressure, humidity, and wind sensors; ice nuclei filters; and a 4-π radiometer that measures actinic flux at 500 and 800 nm. The balloon can stay aloft for an extended period of time (in excess of 24 h) and conduct vertical profiles up to about 1–2 km, contingent upon payload weight, wind speed, and surface elevation. Examples of measurements in mixed-phase clouds at Ny-Ålesund, Svalbard (79°N), and at the South Pole are discussed. The stratus clouds at Ny-Ålesund ranged in temperature from 0° to −10°C and were mostly mixed phase with heavily rimed ice particles, even when cloud-top temperatures were warmer than −5°C. Conversely, mixed-phase clouds at the South Pole contained regions with only water drops at temperatures as cold as −32°C and were often composed of pristine ice crystals. The radiative properties of mixed-phase clouds are a critical component of radiative transfer in polar regions, which, in turn, is a lynch pin for climate change on a global scale.

Corresponding author address: Dr. R. Paul Lawson, Suite 200, 3022 Sterling Circle, SPEC, Inc., Boulder, CO 80301. E-mail: plawson@specinc.com

Abstract

A tethered-balloon system capable of making microphysical and radiative measurements in clouds is described and examples of measurements in boundary layer stratus clouds in the Arctic and at the South Pole are presented. A 43-m3 helium-filled balloon lofts an instrument package that is powered by two copper conductors in the tether. The instrument package can support several instruments, including, but not limited to, a cloud particle imager; a forward-scattering spectrometer probe; temperature, pressure, humidity, and wind sensors; ice nuclei filters; and a 4-π radiometer that measures actinic flux at 500 and 800 nm. The balloon can stay aloft for an extended period of time (in excess of 24 h) and conduct vertical profiles up to about 1–2 km, contingent upon payload weight, wind speed, and surface elevation. Examples of measurements in mixed-phase clouds at Ny-Ålesund, Svalbard (79°N), and at the South Pole are discussed. The stratus clouds at Ny-Ålesund ranged in temperature from 0° to −10°C and were mostly mixed phase with heavily rimed ice particles, even when cloud-top temperatures were warmer than −5°C. Conversely, mixed-phase clouds at the South Pole contained regions with only water drops at temperatures as cold as −32°C and were often composed of pristine ice crystals. The radiative properties of mixed-phase clouds are a critical component of radiative transfer in polar regions, which, in turn, is a lynch pin for climate change on a global scale.

Corresponding author address: Dr. R. Paul Lawson, Suite 200, 3022 Sterling Circle, SPEC, Inc., Boulder, CO 80301. E-mail: plawson@specinc.com
Save