• Antoine, D., , and Nobileau D. , 2003: Recent increase of Saharan dust transport over the Mediterranean seam as revealed from ocean color satellites SeaWiFS observations. J. Geophys. Res., 111, D12214, doi:10.1029/2005JD006795.

    • Search Google Scholar
    • Export Citation
  • Arbelo, M., , Podesta G. , , Hernandez-Leal P. , , and Diaz J. , 2003: Use of TOMS data to correct the Saharan dust effects on SST retrievals from satellite. Adv. Space Res., 32, 21752180.

    • Search Google Scholar
    • Export Citation
  • Bailey, P., 1995: SADIST-2 v100 products. ER-TN-RAL-AT-2164, 124 pp.

  • Brown, S., , Harris A. , , and Mason I. , 1997: New aerosol robust sea surface temperature algorithm for the Along-Track Scanning Radiometer. J. Geophys. Res., 102, 27 97327 989.

    • Search Google Scholar
    • Export Citation
  • Castro, S., , Emery W. , , and Wick G. , 2004: Skin and bulk sea surface temperature estimates from passive microwave and thermal infrared satellite imagery and their relationships to atmospheric forcing. Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS04), Vol. 2, Anchorage, AK, IEEE, 831–834.

    • Search Google Scholar
    • Export Citation
  • Derrien, M., , and Gleau H. L. , 1999: Cloud classification extracted from AVHRR and GOES imagery. Proc. Meteorological Satellite Data User’s Conf., Copenhagen, Denmark, EUMETSAT, 545–553.

    • Search Google Scholar
    • Export Citation
  • Donlon, C., , and Robinson I. , 1998: Radiometric validation of ERS-1 Along-Track Scanning Radiometer average sea surface temperature in the Atlantic Ocean. J. Atmos. Oceanic Technol., 15, 647660.

    • Search Google Scholar
    • Export Citation
  • Donlon, C., and Coauthors, 2007: The Global Ocean Data Assimilation Experiment high-resolution sea surface temperature pilot project. Bull. Amer. Meteor. Soc., 88, 11971213.

    • Search Google Scholar
    • Export Citation
  • GHRSST-PP International Project Office, 2006: The GHRSST-PP product user guide. GDSv1 revision 1.1, GODAE High Resolution Sea Surface Temperature-Pilot Program International Project Office, Hadley Centre, Met Office, Exeter, United Kingdom, 84 pp. [Available online at http://www.medspiration.org/documents/GHRSST-PP-Product-User-Guide-v1.1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., , Chin M. , , Tegen I. , , Prospero J. , , Holben B. , , Dubovik O. , , and Lin S. , 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20 25520 274.

    • Search Google Scholar
    • Export Citation
  • Grey, W. M. F., , North P. R. J. , , Los S. O. , , and Mitchell R. M. , 2006: Aerosol optical depth and land surface reflectance from multiangle AATSR measurements: Global validation and intersensor comparisons. IEEE Trans. Geosci. Remote Sens., 44, 21842197.

    • Search Google Scholar
    • Export Citation
  • Guerzoni, S., , and Chester R. , 1996: The Impact of Desert Dust Across the Mediterranean. Kluwer Academic Publishers, 387 pp.

  • Husar, R., , Prospero J. , , and Stowe L. , 1997: Characterization of tropospheric aerosols over the oceans with the NOAA Advanced Very High Resolution Radiometer optical thickness operational product. J. Geophys. Res., 102, 16 88916 909.

    • Search Google Scholar
    • Export Citation
  • Ignatov, A., , Sapper J. , , Cox S. , , Laszlo I. , , Nalli N. , , and Kidwell K. , 2004: Operational aerosol observation (AEROBS) from AVHRR/3 on board NOAA-KLM satellites. J. Atmos. Oceanic Technol., 21, 326.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kishcha, P., , Alpert P. , , Brakan J. , , Kirchner I. , , and Machenhauer B. , 2003: Atmospheric response to Sahran dust deduced from ECMWF ReAnalysis (ERA) temperature increments. Tellus, 55, 901913.

    • Search Google Scholar
    • Export Citation
  • Legrand, M., , N’doum C. , , and Jankowiak I. , 1994: Satellite-derived climatology of the Saharan aerosol. Passive Infrared Remote Sensing of Clouds and Atmosphere II, D. K. Lynch, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 2309), 127–135.

    • Search Google Scholar
    • Export Citation
  • Lewellyn-Jones, D., , Edwards M. , , Mutlow C. , , Birks A. , , Barton I. , , and Tait H. , 2001: AATSR: Global-change and surface temperature measurements from Envisat. ESA Bulletin, No. 105, European Space Agency, Paris, France, 11–21.

    • Search Google Scholar
    • Export Citation
  • May, D., , Stowe L. , , Hawkins J. , , and McClain E. , 1992: A correction for Saharan dust effects on satellite sea surface temperature measurements. J. Geophys. Res., 97, 36113619.

    • Search Google Scholar
    • Export Citation
  • McClain, E., , Pichel W. , , and Walton C. , 1985: Comparative performance of AVHRR based multichannel sea surface temperatures. J. Geophys. Res., 90, 11 58711 601.

    • Search Google Scholar
    • Export Citation
  • Meloni, D., , di Sarra A. , , Iorio D. , , and Fiocco G. , 2005: Influence of the vertical profile of Saharan dust on the visibile direct radiative forcing. J. Quant. Spectrosc. Radiat. Transfer, 93, 397413.

    • Search Google Scholar
    • Export Citation
  • Merchant, C., , and Harris A. , 1999: Toward the elimination of bias in satellite retrievals of sea surface temperature: 2. Comparison with in situ measurements. J. Geophys. Res., 104, 23 57923 590.

    • Search Google Scholar
    • Export Citation
  • Mona, L., , Amodeo A. , , Pandolfi M. , , and Pappalardo G. , 2006: Saharan dust intrusions in the Mediterranean area: Three years of Raman lidar measurements. J. Geophys. Res., 111, D16203, doi:10.1029/2005JD006569.

    • Search Google Scholar
    • Export Citation
  • Moulin, C., and Coauthors, 1998: Satellite climatology of African dust transport in the Mediterranean atmosphere. J. Geophys. Res., 103, 13 13713 144.

    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., , and Stowe L. , 2002: Aerosol correction for remotely sensed sea surface temperatures from the National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer. J. Geophys. Res., 107, 3172, doi:10.1029/2001JC001162.

    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., , and Reynolds R. , 2006: Sea surface temperature daytime climate analyses derived from aerosol bias-corrected satellite data. J. Climate, 19, 410428.

    • Search Google Scholar
    • Export Citation
  • North, P., , Briggs S. , , Plummer S. , , and Settle J. , 1999: Retrieval of land surface bidirectional reflectance and aerosol opacity from ATSR-2 multi-angle imagery. IEEE Trans. Geosci. Remote Sens., 37, 526537.

    • Search Google Scholar
    • Export Citation
  • Noyes, E., , Minnett P. , , Remedios J. , , Corlett G. , , Good S. , , and Llewellyn-Jones D. T. , 2006: The accuracy of the AATSR sea surface temperature in the Caribbean. Remote Sens. Environ., 101, 3851.

    • Search Google Scholar
    • Export Citation
  • OSISAFPT, 2005: North Atlantic regional sea surface temperature product manual. Version 1.7, EUMETSAT Ocean and Sea Ice Satellite Application Facility, 50 pp. [Available online at http://www.osi-saf.org/biblio/docs/ss1_pum_leo_sst_2_2.pdf.]

    • Search Google Scholar
    • Export Citation
  • Piolle, J., , and Prevost C. , 2006: Match-up database user manual. IFREMER, 47 pp.

  • Prospero, J., 1999: Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. J. Geophys. Res., 104, 15 91715 927.

    • Search Google Scholar
    • Export Citation
  • Robinson, I., 2004: Measuring the Oceans from Space. The Principles and Methods of Satellite Oceanography. Springer-Praxis, 669 pp.

  • Robinson, I., , and Challenor P. , 2004: Medspiration—System requirements document. Tech. Rep. MED-SOC-RS-001-1, SOC Laboratory for Satellite Oceanography, Southampton Oceanography Centre, 193 pp.

    • Search Google Scholar
    • Export Citation
  • Ruescas, A., 2006: Remote sensing applications in the thermal range to the study of the atmospheric processes in the Western Mediterranean basin (in Spanish). Ph.D. thesis, University Jaume I, Castellón de la Plana, Spain, I 300 pp.

  • Schluessel, P., , Emery W. , , Grassl H. , , and Mammen T. , 1990: On the skin–bulk temperature difference and its impact on satellite remote sensing of sea surface temperature. J. Geophys. Res., 95, 13 34113 356.

    • Search Google Scholar
    • Export Citation
  • Stowe, L., , Ignatov A. , , and Singh R. , 1997: Development, validation and potential enhancements to the second generation operational aerosol product at the National Environmental Satellite, Data and Information Service of the National Oceanic and Atmospheric Administration. J. Geophys. Res., 102, 16 92316 934.

    • Search Google Scholar
    • Export Citation
  • Strong, A., , Kearns E. , , and Gjovig K. , 2000: Sea surface temperature signals from satellites—An update. Geophys. Res. Lett., 27, 16671670.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., , and Flocas H. A. , 1999: A case study of Saharan cyclogenesis. Mon. Wea. Rev., 125, 11471165.

  • Torres, O., , Bartia P. , , Herman J. , , Ahmad Z. , , and Gleason J. , 1998: Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res., 103, 17 09917 110.

    • Search Google Scholar
    • Export Citation
  • Trigo, I., , Davies T. , , and Bigg G. , 1999: Objective climatology of cyclones in the Mediterranean region. J. Climate, 12, 16851696.

  • Vazquez-Cuervo, J., , and Sumagaysay R. , 2001: A comparison between sea surface temperatures as derived from the European remote sensing Along-Track Scanning Radiometer and the NOAA/NAA AVHRR Oceans Pathfinder dataset. Bull. Amer. Meteor. Soc., 82, 925944.

    • Search Google Scholar
    • Export Citation
  • Walton, C., 1988: Nonlinear multichannel algorithm for estimating SST with AVHRR satellite data. J. Appl. Meteor., 27, 115124.

  • Walton, C., , Pichel W. , , Sapper F. , , and May M. , 1998: The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with NOAA polar-orbiting environmental satellites. J. Geophys. Res., 103, 27 99928 012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 123 28
PDF Downloads 51 51 15

Examining the Effects of Dust Aerosols on Satellite Sea Surface Temperatures in the Mediterranean Sea Using the Medspiration Matchup Database

View More View Less
  • 1 Global Change Unit, Image Processing Laboratory, University of Valencia, Valencia, Spain
  • | 2 Observation of the Earth and Atmosphere Group, Department of Physics, University of La Laguna, Tenerife, Spain
  • | 3 Global Change Unit, Image Processing Laboratory, University of Valencia, Valencia, Spain
© Get Permissions
Restricted access

Abstract

Dust aerosol plumes from the Sahara cover the Mediterranean Sea regularly during the summer months (June–August) and occasionally during other seasons. Dust can absorb infrared longwave radiation, thus causing a drop in sea surface temperature (SST) retrievals from satellite. To quantify the magnitude of this absorption and to understand the sources of the biases that might be introduced when trying to validate SST algorithms with in situ bulk temperatures, the effects of the dust absorption are studied using the Medspiration Match-up Database. This database provides in situ and satellite SSTs derived from the Advanced Very High Resolution Radiometer (AVHRR) and the Advanced Along-Track Scanning Radiometer (AATSR), and the difference between skin and bulk measurements is calculated in order to obtain errors or residuals, which are classified by ranges and compared to an aerosol optical thickness product derived from the sensors. The behavior of the residuals is studied and there is clear correspondence between higher residual values and higher aerosol concentrations, though in some cases this relation is not so evident, especially during autumn months. Residuals for this period are then related to other atmospheric effects and layer boundary physical processes by using ancillary data (e.g., soundings).

Corresponding author address: Ana B. Ruescas, Global Change Unit, IPL, P.O. Box 22085, E-46071 Valencia, Spain. E-mail: bruescas@uv.es

Abstract

Dust aerosol plumes from the Sahara cover the Mediterranean Sea regularly during the summer months (June–August) and occasionally during other seasons. Dust can absorb infrared longwave radiation, thus causing a drop in sea surface temperature (SST) retrievals from satellite. To quantify the magnitude of this absorption and to understand the sources of the biases that might be introduced when trying to validate SST algorithms with in situ bulk temperatures, the effects of the dust absorption are studied using the Medspiration Match-up Database. This database provides in situ and satellite SSTs derived from the Advanced Very High Resolution Radiometer (AVHRR) and the Advanced Along-Track Scanning Radiometer (AATSR), and the difference between skin and bulk measurements is calculated in order to obtain errors or residuals, which are classified by ranges and compared to an aerosol optical thickness product derived from the sensors. The behavior of the residuals is studied and there is clear correspondence between higher residual values and higher aerosol concentrations, though in some cases this relation is not so evident, especially during autumn months. Residuals for this period are then related to other atmospheric effects and layer boundary physical processes by using ancillary data (e.g., soundings).

Corresponding author address: Ana B. Ruescas, Global Change Unit, IPL, P.O. Box 22085, E-46071 Valencia, Spain. E-mail: bruescas@uv.es
Save