• Bréger, G., 1977: Etude par radar Doppler de mouvements atmosphériques au voisinage d’un front froid (in French). Thèse de 3ème cycle, Université Pierre et Marie Curie-Paris VI, 108 pp.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., , and Wexler R. , 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113.

    • Search Google Scholar
    • Export Citation
  • Chong, M., , and Hauser D. , 1989: A tropical squall line observed during the COPT 81 experiment in West Africa. Part II: Water budget. Mon. Wea. Rev., 117, 728744.

    • Search Google Scholar
    • Export Citation
  • Chong, M., , and Hauser D. , 1990: A tropical squall line observed during the COPT 81 experiment in West Africa. Part III: Heat and moisture budgets. Mon. Wea. Rev., 118, 16961706.

    • Search Google Scholar
    • Export Citation
  • Chong, M., , Amayenc P. , , Scialom G. , , and Testud J. , 1987: A tropical squall line observed during the COPT 81 experiment in West Africa. Part I: Kinematic structure inferred from dual-Doppler radar data. Mon. Wea. Rev., 115, 670694.

    • Search Google Scholar
    • Export Citation
  • Chumchean, S., , Seed A. , , and Sharma A. , 2004: Application of scaling in radar reflectivity for correcting range-dependent bias in climatological radar rainfall estimates. J. Atmos. Oceanic Technol., 21, 15451556.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., , and Rutledge S. A. , 1998: Vertical motions, diabatic heating, and rainfall characteristics in North Australia convective systems. Quart. J. Roy. Meteor. Soc., 124, 11331162.

    • Search Google Scholar
    • Export Citation
  • Evaristo, R., , Scialom G. , , Viltard N. , , and Lemaître Y. , 2010: Polarimetric signatures and hydrometeor classification of West African squall line. Quart. J. Roy. Meteor. Soc., 136 (S1), 272288.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and Mc Bride J. L. , 1989: Vertical distribution of heating in AMEX and GATE cloud clusters. J. Atmos. Sci., 46, 34643478.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , Wang H.-J. , , and Mc Bride J. L. , 1996: Rawinsonde budget analyses during the TOGA COARE IOP. J. Atmos. Sci., 53, 17611780.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., , and Johnson R. H. , 1991: Heat and moisture budgets of an intense midlatitude squall line. J. Atmos. Sci., 48, 122146.

  • Hauser, D., , and Amayenc P. , 1986: Retrieval of cloud water and water vapor contents from Doppler radar data in a tropical squall line. J. Atmos. Sci., 43, 823838.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., , and Schotz S. , 1985: Structure and evolution of a severe squall line over Oklahoma. Mon. Wea. Rev., 113, 15631589.

    • Search Google Scholar
    • Export Citation
  • Higgins, W., and Coauthors, 2006: The NAME 2004 field campaign field and modeling strategy. Bull. Amer. Meteor. Soc., 87, 7994.

  • Houze, R. A., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 15401567.

  • Houze, R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396409.

  • Hung, C.-W., , and Yanai M. , 2004: Factors contributing to the onset of the Australian summer monsoon. Quart. J. Roy. Meteor. Soc., 130, 739758.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev., 112, 15901601.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and Young G. S. , 1983: Heat and moisture budgets of tropical mesoscale anvil clouds. J. Atmos. Sci., 40, 21382147.

  • Johnson, R. H., , and Ciesielski P. E. , 2002: Characteristics of the 1988 summer monsoon onset over the northern South China Sea. J. Meteor. Soc. Japan, 80, 561578.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , Ciesielski P. E. , , L’Ecuyer T. S. , , and Newman A. J. , 2010: Diurnal cycle of convection during the 2004 North American Monsoon Experiment. J. Climate, 23, 10601078.

    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., , Redelsperger J.-L. , , and Jaubert G. , 1988: Comparison between a three-dimensional simulation and Doppler radar data of a tropical squall line: Transports of mass, momentum, heat, and moisture. J. Atmos. Sci., 45, 34833500.

    • Search Google Scholar
    • Export Citation
  • Le Bouar, E., , Testud J. , , and Keenan T. D. , 2001: Validation of the rain profiling algorithm “ZPHI” from the C-band polarimetric weather radar in Darwin. J. Atmos. Oceanic Technol., 18, 18191837.

    • Search Google Scholar
    • Export Citation
  • Lemaître, Y., 1982: Etude dynamique et thermodynamique de lignes de grains tropicales observées à Korhogo pendant l’expérience COPT 79. J. Rech. Atmos., 16, 4769.

    • Search Google Scholar
    • Export Citation
  • Lemaître, Y., , and Testud J. , 1986: Observation and modelling of tropical squall lines observed during the ‘COPT 79’ experiment. Ann. Geophys., 4B, 2136.

    • Search Google Scholar
    • Export Citation
  • Li, W., , Wang D. , , Lei T. , , and Wang H. , 2009: Convective and stratiform rainfall and heating associated with the summer monsoon over the South China Sea based on TRMM data. Theor. Appl. Climatol., 95, 157163.

    • Search Google Scholar
    • Export Citation
  • Lin, X., , and Johnson R. H. , 1994: Heat and moisture budgets and circulation characteristics of a frontal squall line. J. Atmos. Sci., 51, 16611681.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387.

  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493.

    • Search Google Scholar
    • Export Citation
  • Magagi, R., , and Barros A. P. , 2004: Estimation of latent heating of rainfall during the onset of the Indian monsoon using TRMM PR and radiosonde data. J. Appl. Meteor., 43, 328349.

    • Search Google Scholar
    • Export Citation
  • Marécal, V., 1992: Etude microphysique et thermodynamique de bandes de précipitations frontales à partir d’observations par radars Doppler (in French). Ph.D. thesis, Université Paris 7, 284 pp.

  • Matejka, T. J., , and Srivastava R. C. , 1981: Doppler radar study of a region of widespread precipitation trailing a mid-latitude squall line. Preprints, 20th Conf. on Radar Meteorology, Boston, MA, Amer. Meteor. Soc., 353–357.

    • Search Google Scholar
    • Export Citation
  • Raymond, J. D., and Coauthors, 2004: EPIC2001 and the coupled ocean–atmosphere system of the tropical east Pacific. Bull. Amer. Meteor. Soc., 85, 13411354.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., , Thorncroft C. D. , , Diedhiou A. , , Lebel T. , , Parker D. J. , , and Polcher J. , 2006: African monsoon multidisciplinary analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87, 17391746.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , Cieselski P. E. , , and Zhang M. H. , 2008: Tropical cloud heating profiles analysis from KWAJEX. Mon. Wea. Rev., 136, 42894300.

    • Search Google Scholar
    • Export Citation
  • Scialom, G., , Faroux J. , , Giraud M. , , Ney R. , , Evaristo R. , , Lemaître Y. , , and Viltard N. , 2009: RONSARD radar: Implementation of dual polarization on a C-band Doppler weather radar. IEEE Geosci. Remote Sens. Lett., 6, 132136.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , Takayabu Y. N. , , Tao W.-K. , , and Johnson D. E. , 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43, 10951113.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , Takayabu Y. N. , , Tao W.-K. , , and Shie C.-L. , 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor. Climatol., 46, 10981124.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , Takayabu Y. N. , , and Tao W.-K. , 2008: Spectral retrieval of latent heating profiles from TRMM PR data. Part III: Estimating apparent moisture sink profiles over tropical oceans. J. Appl. Meteor. Climatol., 47, 620640.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , Takayabu Y. N. , , Kida S. , , Tao W.-K. , , Zeng X. , , Yokoyama C. , , and L’Ecuyer T. , 2009: Spectral retrieval of latent heating profiles from TRMM PR data. Part IV: Comparisons of lookup tables from two- and three-dimensional cloud-resolving model simulations. J. Climate, 22, 55775594.

    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A. F., and Coauthors, 2002: Cloud and rain processes in a biosphere-atmosphere interaction context in the Amazon Region. J. Geophys. Res., 107, 8072, doi:10.1029/2001JD000335.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , Adler R. F. , , and North G. R. , 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278294.

    • Search Google Scholar
    • Export Citation
  • Smull, B. F., , and Houze R. A. , 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117133.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., , Simpson J. , , Sui C.-H. , , Ferrier B. , , Lang S. , , Scala J. , , Chou M.-D. , , and Pickering K. , 1993: Heating, moisture and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50, 673690.

    • Search Google Scholar
    • Export Citation
  • Testud, J., , Le Bouar E. , , Obligis E. , , and Ali-Mehenni M. , 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , Esbensen S. , , and Chu J.-H. , 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , and Smith E. A. , 2000: Vertical structure and transient behavior of convective–stratiform heating in TOGA-COARE from combined satellite-sounding analysis. J. Appl. Meteor., 39, 14911513.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , and Houze R. A. , 2000: The 1997 Pan American Climate Studies Tropical Eastern Pacific Process Studies. Part I: ITCZ region. Bull. Amer. Meteor. Soc., 81, 451481.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , Meitin R. J. , , and Lemone M. A. , 1981: Mesoscale motions fields associated with a slowly moving GATE convective band. J. Atmos. Sci., 38, 17251750.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and Coauthors, 2009: The Saharan air layer and the fate of African easterly waves. NASA’s AMMA field study of tropical cyclogenesis. Bull. Amer. Meteor. Soc., 90, 11371156.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 1
PDF Downloads 6 6 0

Vertical Moistening by AMMA Mesoscale Convective Systems

View More View Less
  • 1 Laboratoire Atmosphères, Milieux, Observations Spatiales, IPSL, Vélizy, France
© Get Permissions
Restricted access

Abstract

The apparent heat source Q1 and the apparent moisture sink Q2 are crucial parameters for precipitating systems studies because they allow for the evaluation of their contribution in water and energy transport and infer some of the mechanisms that are responsible for their evolution along their lifetime. In this paper, a new approach is proposed to estimate Q2 budgets from radar observations within precipitating areas at the scale of the measurements, that is, either convective scale or mesoscale, depending on the selected retrieval zone. This approach relies upon a new analysis of the radar reflectivity based on the concept of the traditional velocity–azimuth display (VAD) analysis. From the following five steps, Q2 is deduced from velocity and reflectivity fields: (i) mixing ratio retrieval using empirical relations, (ii) radial wind analysis using the VAD analysis, (iii) radar reflectivity analysis using a new analysis called reflectivity–azimuth display (RAD), (iv) retrieval of mixing ratio derivatives, and (v) Q2 retrieval.

The originality and the main interest of the present approach with respect to previous studies rely on the fact it uses radar data alone and is based on a relatively low-cost analysis, allowing future systematic application on large datasets.

In the present paper, this analysis is described and its robustness is evaluated and illustrated on three cases observed during the African Monsoon Multidisciplinary Analyses (AMMA) special observing period (SOP) field experiment (15 June–15 September) by means of the Recherche sur les Orages et Nuages par un Système Associé de Radars Doppler (RONSARD) radar.

Results are analyzed in terms of the convective or stratiform character of observed precipitation.

Corresponding author address: Georges Scialcom, Boulevard d’Alembert, Quartier des Garennes 11, LATMOS-IPSL-UVSQ/CNRS, 78280 Guyancourt, France. E-mail: georges.scialom@latmos.ipsl.fr

Abstract

The apparent heat source Q1 and the apparent moisture sink Q2 are crucial parameters for precipitating systems studies because they allow for the evaluation of their contribution in water and energy transport and infer some of the mechanisms that are responsible for their evolution along their lifetime. In this paper, a new approach is proposed to estimate Q2 budgets from radar observations within precipitating areas at the scale of the measurements, that is, either convective scale or mesoscale, depending on the selected retrieval zone. This approach relies upon a new analysis of the radar reflectivity based on the concept of the traditional velocity–azimuth display (VAD) analysis. From the following five steps, Q2 is deduced from velocity and reflectivity fields: (i) mixing ratio retrieval using empirical relations, (ii) radial wind analysis using the VAD analysis, (iii) radar reflectivity analysis using a new analysis called reflectivity–azimuth display (RAD), (iv) retrieval of mixing ratio derivatives, and (v) Q2 retrieval.

The originality and the main interest of the present approach with respect to previous studies rely on the fact it uses radar data alone and is based on a relatively low-cost analysis, allowing future systematic application on large datasets.

In the present paper, this analysis is described and its robustness is evaluated and illustrated on three cases observed during the African Monsoon Multidisciplinary Analyses (AMMA) special observing period (SOP) field experiment (15 June–15 September) by means of the Recherche sur les Orages et Nuages par un Système Associé de Radars Doppler (RONSARD) radar.

Results are analyzed in terms of the convective or stratiform character of observed precipitation.

Corresponding author address: Georges Scialcom, Boulevard d’Alembert, Quartier des Garennes 11, LATMOS-IPSL-UVSQ/CNRS, 78280 Guyancourt, France. E-mail: georges.scialom@latmos.ipsl.fr
Save