• Asmar, N. H., 2004: Partial Differential Equations with Fourier Series and Boundary Value Problems. 2nd ed. Prentice Hall, 816 pp.

  • Bowler, N. E., , Pierce C. E. , , and Seed A. , 2004: Development of a precipitation nowcasting algorithm based on optical flow techniques. J. Hydrol., 288, 7491.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., , Brewster K. , , Johnson B. , , Phillips B. , , Preston M. , , Westbrook D. , , and Zink M. , 2005: CASA’s first test bed: Integrative Project 1. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 14R2. [Available online at http://ams.confex.com/ams/pdfpapers/97188.pdf.]

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1980: Local weather forecasting. Proc. Roy. Soc. London, 371A, 179211.

  • Browning, K. A., Ed., 1982: Nowcasting. Academic Press, 256 pp.

  • Byers, H. R., , and Braham R. R. , 1949: The Thunderstorm: The Final Report of the Thunderstorm Project. U.S. Government Printing Office, 282 pp.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., , and Lim S. , 2008: Retrieval of reflectivity in a networked radar environment. J. Atmos. Oceanic Technol., 25, 17551766.

    • Search Google Scholar
    • Export Citation
  • Chornoboy, E. S., , Matlin A. M. , , and Morgan J. P. , 1994: Automatic storm tracking for air traffic control. Lincoln Lab. J., 7, 427448.

    • Search Google Scholar
    • Export Citation
  • Cornford, D., 2004: A Bayesian state space modeling approach to probabilistic quantitative precipitation forecasting. J. Hydrol., 288, 92104.

    • Search Google Scholar
    • Export Citation
  • Dance, S., , Ebert E. , , and Scurrah D. , 2010: Thunderstorm strike probability nowcasting. J. Atmos. Oceanic Technol., 27, 7993.

  • Dennery, P., , and Krzywicki A. , 1996: Mathematics for Physicists. Dover Publications, 400 pp.

  • Dixon, M., , and Wiener G. , 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., , Davies-Jones R. , , and Keller D. L. , 1990: On summary measures of skill in rare event forecasting based on contingency tables. Wea. Forecasting, 5, 576585.

    • Search Google Scholar
    • Export Citation
  • Dupree, W., and Coauthors, 2009: The 2008 CoSPA forecast demonstration. Preprints, 14th Conf. Aviation, Range, and Aerospace Meteorology, Phoenix, AZ, Amer. Meteor. Soc., P1.1. [Available online at http://ams.confex.com/ams/pdfpapers/151488.pdf.]

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , and McBride J. L. , 2000: Verification of precipitation in weather systems: Determination of systemic errors. J. Hydrol., 239, 179202.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , Wilson L. J. , , Brown B. G. , , Nurmi P. , , Brooks H. E. , , Bally J. , , and Jaeneke M. , 2004: Verification of nowcasts from the WWRP Sydney 2000 Forecast Demonstration Project. Wea. Forecasting, 19, 7396.

    • Search Google Scholar
    • Export Citation
  • Fox, N. I., , and Wikle C. K. , 2005: A Bayesian quantitative precipitation nowcast scheme. Wea. Forecasting, 20, 264275.

  • Frigo, M., , and Johnson S. G. , 2005: The design and implementation of FFTW3. Proc. IEEE, 93, 216231.

  • Germann, U., , and Zawadzki I. , 2002: Scale dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 28592873.

    • Search Google Scholar
    • Export Citation
  • Germann, U., , and Zawadzki I. , 2004: Scale dependence of the predictability of precipitation from continental radar images. Part II: Probability forecasts. J. Appl. Meteor., 43, 7489.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., , and Krajewski W. F. , 2000: A large-sample investigation of statistical procedures for radar-based short-term quantitative precipitation forecasting. J. Hydrol., 239, 6984.

    • Search Google Scholar
    • Export Citation
  • Han, L. Y., , Fu S. , , Zhao L. , , Zheng Y. , , Wang H. , , and Lin Y. , 2009: 3D convective storm identification, tracking, and forecasting—An enhanced TITAN algorithm. J. Atmos. Oceanic Technol., 26, 719732.

    • Search Google Scholar
    • Export Citation
  • Handwerker, J., 2002: Cell tracking with TRACE3D—A new algorithm. Atmos. Res., 61, 1534.

  • Higgins, J. R., 1996: Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford University Press, 296 pp.

  • Jogalekar, P., , and Woodside M. , 2000: Evaluating the scalability of distributed systems. IEEE Trans. Parallel Distributed Syst., 11, 589603.

    • Search Google Scholar
    • Export Citation
  • Johnson, J. T., , Mackeen P. L. , , Witt A. , , Mitchell E. D. , , Stumpf G. J. , , Eilts M. D. , , and Thomas K. W. , 1998: The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263276.

    • Search Google Scholar
    • Export Citation
  • Jones, G. L., , and Hobert J. P. , 2002: Markov chain Monte Carlo. The Encyclopedia of Environmetrics, Vol. 1, W. Piegorsch and A. El-Shaarawi, Eds., Wiley, 1199–1207.

    • Search Google Scholar
    • Export Citation
  • Junyent, F., , Chandrasekar V. , , McLaughlin D. , , Insanic E. , , and Bharadwaj N. , 2010: The CASA Integrated Project 1 networked radar system. J. Atmos. Oceanic Technol., 27, 6178.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., , Rabin R. , , and DeBrunner V. , 2003: Multiscale storm identification and forecast. J. Atmos. Res., 67–68, 367380.

  • Li, L. W., , Schmid W. , , and Joss J. , 1995: Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteor., 34, 12861299.

    • Search Google Scholar
    • Export Citation
  • Li, P. W., , and Lai E. S. , 2004: Short-range quantitative precipitation forecasting in Hong Kong. J. Hydrol., 288, 189209.

  • Lim, S., , and Chandrasekar V. , 2009: Evaluation of network-based attenuation correction in the CASA IP-1 testbed. Preprints, 34th Conf. on Radar Meteor., Williamsburg, VA, Amer. Meteor. Soc., P2.26. [Available online at http://ams.confex.com/ams/pdfpapers/156059.pdf.]

    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817.

    • Search Google Scholar
    • Export Citation
  • Megenhardt, D. L., , Mueller C. , , Trier S. , , Ahijevych D. , , and Rehak N. , 2004: NCWF-2 probabilistic forecasts. Preprints, 11th Conf. on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., 5.2. [Available online at http://ams.confex.com/ams/pdfpapers/81993.pdf.]

    • Search Google Scholar
    • Export Citation
  • National Research Council, 1995: Assessment of NEXRAD Coverage and Associated Weather Services. National Academies Press, 112 pp.

  • Oppenheim, A. V., , and Schafer R. W. , 2009: Discrete-Time Signal Processing. 3rd ed. Prentice Hall, 1120 pp.

  • Phillips, B., , Westbrook D. , , Pepyne D. , , Brotzge J. , , Bass E. J. , , and Rude D. , 2008: User evaluations of adaptive scanning patterns in the CASA Spring Experiment 2007. Proc. 2008 IEEE Geoscience and Remote Sensing Symp., Vol. 5, Boston, MA, IEEE, V-156–V-159.

    • Search Google Scholar
    • Export Citation
  • Pierce, C. E., and Coauthors, 2004: The nowcasting of precipitation during Sydney 2000: An appraisal of the QPF algorithms. Wea. Forecasting, 19, 721.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2001: Weather Support to Deicing Decision Making (WSDDM): A winter weather nowcasting system. Bull. Amer. Meteor. Soc., 82, 579595.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., , Dixon M. , , Vasiloff S. , , Hage F. , , Knight S. , , Vivekanandan J. , , and Xu M. , 2003: Snow nowcasting using a real-time correlation of radar reflectivity with snow gauge accumulation. J. Appl. Meteor., 42, 2036.

    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., 1981: A pattern recognition technique for use with conventional weather radar to determine internal storm motions. Atmos. Technol., 13, 119134.

    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., , and Garvey E. T. , 1978: Three-dimensional storm motion detection by conventional weather radar. Nature, 273, 287289.

    • Search Google Scholar
    • Export Citation
  • Rood, R. B., 1987: Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev. Geophys., 25, 71100.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575.

  • Schmeits, M. J., , Kok K. J. , , Vogelenzang D. H. P. , , and Westrhenen R. M. V. , 2008: Probabilistic forecasts of (severe) thunderstorms for the purpose of issuing a weather alarm in the Netherlands. Wea. Forecasting, 23, 12531267.

    • Search Google Scholar
    • Export Citation
  • Seed, A. W., 2003: A dynamic and spatial scaling approach to advection forecasting. J. Appl. Meteor., 42, 381388.

  • Shannon, C. E., 1949: Communication in the presence of noise. Proc. IRE, 37, 1021.

  • Staniforth, A., , and Cote J. , 1991: Semi-Lagrangian integration schemes for atmospheric models—A review. Mon. Wea. Rev., 119, 22062223.

    • Search Google Scholar
    • Export Citation
  • Stark, H., , and Woods J. W. , 1994: Probability, Random Processes, and Estimation Theory for Engineers. 2nd ed. Prentice Hall, 576 pp.

  • Stensrud, D. J., , and Wandishin M. S. , 2000: The correspondence ratio in forecast evaluation. Wea. Forecasting, 15, 593602.

  • Tsonis, A. A., , and Austin G. L. , 1981: An evaluation of extrapolation techniques for the short-term prediction of rain amounts. Atmos.–Ocean, 19, 5465.

    • Search Google Scholar
    • Export Citation
  • Turner, B. J., , Zawadzki I. , , and Germann U. , 2004: Predictability of precipitation from continental radar images. Part III: Operational nowcasting implementation (MAPLE). J. Appl. Meteor., 43, 231248.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., , and Foote G. B. , 1990: Determination of the boundary layer airflow from a single Doppler radar. J. Atmos. Oceanic Technol., 7, 218232.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and Klemp J. B. , 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 331–358.

    • Search Google Scholar
    • Export Citation
  • Whittaker, E. T., 1915: On the functions which are represented by the expansion of the interpolation theory. Proc. Roy. Soc. Edinburgh, 35A, 181194.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Wilson, J. W., , Crook N. A. , , Mueller C. K. , , Sun J. , , and Dixon M. , 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 20792099.

    • Search Google Scholar
    • Export Citation
  • Wolfson, M. M., , Forman B. E. , , Hallowell R. G. , , and Moore M. P. , 1999: The growth and decay storm tracker. Preprints, Eighth Conf. on Aviation, Range, and Aerospace Meteor, Dallas, TX, Amer. Meteor. Soc., 58–62.

    • Search Google Scholar
    • Export Citation
  • Wolfson, M. M., , Dupree W. J. , , Rasmussen R. M. , , Steiner M. , , Benjamin S. G. , , and Weygandt S. , 2008: Consolidated storm prediction for aviation (CoSPA). Preprints, 13th Conf. on Aviation, Range, and Aerospace Meteorology, New Orleans, LA, Amer. Meteor. Soc., J6.5. [Available online at http://ams.confex.com/ams/pdfpapers/132981.pdf.]

    • Search Google Scholar
    • Export Citation
  • Xu, G., , and Chandrasekar V. , 2005: Radar storm motion estimation and beyond: A spectral algorithm and radar observation based dynamic model. Proc. WMO Symp. on Nowcasting, Toulouse, France, WMO, 2.41. [Available online at http://www.meteo.fr/cic/wsn05/resumes_longs/2.41-138.pdf.]

    • Search Google Scholar
    • Export Citation
  • Xu, K., , Wikle C. K. , , and Fox N. I. , 2005: A kernel-based spatio-temporal dynamical model for nowcasting weather radar reflectivities. J. Amer. Stat. Soc., 100, 11341144.

    • Search Google Scholar
    • Export Citation
  • Zink, M., and Coauthors, 2005: Meteorological command and control: An end-to-end architecture for a hazardous weather detection sensor network. Proc. 2005 Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services, Seattle, WA, USENIX Association and ACM SIGMOBILE, 37–42.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 171 171 31
PDF Downloads 150 150 26

The CASA Nowcasting System

View More View Less
  • 1 Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Short-term prediction (nowcasting) of high-impact weather events can lead to significant improvement in warnings and advisories and is of great practical importance. Nowcasting using weather radar reflectivity data has been shown to be particularly useful and the Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network provides high-resolution (0.5-km spatial and 1-min temporal resolution) reflectivity data that are amenable to producing valuable nowcasts. This paper describes the theory and implementation of a nowcasting system operating in the CASA Distributed Collaborative Adaptive Sensing network and shows that nowcasting can be reliably performed in such a distributed environment. In this context, nowcasting is used in a traditional sense to produce predictions of radar reflectivity fields up to 10 min into the future to support emergency manager decision making, and in a novel manner to support researchers and operational forecasters where 1–5-min nowcasts are used to steer the radar nodes to better observe moving precipitation systems. The high-resolution nature of CASA data and distributed system architecture necessitate the use of a fast nowcasting algorithm. A method is described that uses linear least squares estimation implemented in the Fourier domain for motion estimation with advection performed via a kernel-based method formulated in the spatial domain. Results of a performance evaluation during the CASA 2009 Integrative Project 1 experiment are presented that show that the nowcasting system significantly outperformed persistence forecasts of radar reflectivity in terms of critical success index and mean absolute error for lead times up to 10 min. Feedback from end users regarding the use of nowcasting for adaptive scanning was also unanimously positive.

Corresponding author address: Evan Ruzanski, Colorado State University, Campus Delivery 1373, Fort Collins, CO 80523. E-mail: ruzanski@engr.colostate.edu

Abstract

Short-term prediction (nowcasting) of high-impact weather events can lead to significant improvement in warnings and advisories and is of great practical importance. Nowcasting using weather radar reflectivity data has been shown to be particularly useful and the Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network provides high-resolution (0.5-km spatial and 1-min temporal resolution) reflectivity data that are amenable to producing valuable nowcasts. This paper describes the theory and implementation of a nowcasting system operating in the CASA Distributed Collaborative Adaptive Sensing network and shows that nowcasting can be reliably performed in such a distributed environment. In this context, nowcasting is used in a traditional sense to produce predictions of radar reflectivity fields up to 10 min into the future to support emergency manager decision making, and in a novel manner to support researchers and operational forecasters where 1–5-min nowcasts are used to steer the radar nodes to better observe moving precipitation systems. The high-resolution nature of CASA data and distributed system architecture necessitate the use of a fast nowcasting algorithm. A method is described that uses linear least squares estimation implemented in the Fourier domain for motion estimation with advection performed via a kernel-based method formulated in the spatial domain. Results of a performance evaluation during the CASA 2009 Integrative Project 1 experiment are presented that show that the nowcasting system significantly outperformed persistence forecasts of radar reflectivity in terms of critical success index and mean absolute error for lead times up to 10 min. Feedback from end users regarding the use of nowcasting for adaptive scanning was also unanimously positive.

Corresponding author address: Evan Ruzanski, Colorado State University, Campus Delivery 1373, Fort Collins, CO 80523. E-mail: ruzanski@engr.colostate.edu
Save