Statistics of Cloud Optical Properties from Airborne Lidar Measurements

John E. Yorks Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by John E. Yorks in
Current site
Google Scholar
PubMed
Close
,
Dennis L. Hlavka Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by Dennis L. Hlavka in
Current site
Google Scholar
PubMed
Close
,
William D. Hart Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by William D. Hart in
Current site
Google Scholar
PubMed
Close
, and
Matthew J. McGill NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Matthew J. McGill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate knowledge of cloud optical properties, such as extinction-to-backscatter ratio and depolarization ratio, can have a significant impact on the quality of cloud extinction retrievals from lidar systems because parameterizations of these variables are often used in nonideal conditions to determine cloud phase and optical depth. Statistics and trends of these optical parameters are analyzed for 4 yr (2003–07) of cloud physics lidar data during five projects that occurred in varying geographic locations and meteorological seasons. Extinction-to-backscatter ratios (also called lidar ratios) are derived at 532 nm by calculating the transmission loss through the cloud layer and then applying it to the attenuated backscatter profile in the layer, while volume depolarization ratios are computed using the ratio of the parallel and perpendicular polarized 1064-nm channels. The majority of the cloud layers yields a lidar ratio between 10 and 40 sr, with the lidar ratio frequency distribution centered at 25 sr for ice clouds and 16 sr for altocumulus clouds. On average, for ice clouds the lidar ratio slightly decreases with decreasing temperature, while the volume depolarization ratio increases significantly as temperatures decrease. Trends for liquid water clouds (altocumulus clouds) are also observed. Ultimately, these observed trends in optical properties, as functions of temperature and geographic location, should help to improve current parameterizations of extinction-to-backscatter ratio, which in turn should yield increased accuracy in cloud optical depth and radiative forcing estimates.

Corresponding author address: John E. Yorks, Code 613.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: john.e.yorks@nasa.gov

Abstract

Accurate knowledge of cloud optical properties, such as extinction-to-backscatter ratio and depolarization ratio, can have a significant impact on the quality of cloud extinction retrievals from lidar systems because parameterizations of these variables are often used in nonideal conditions to determine cloud phase and optical depth. Statistics and trends of these optical parameters are analyzed for 4 yr (2003–07) of cloud physics lidar data during five projects that occurred in varying geographic locations and meteorological seasons. Extinction-to-backscatter ratios (also called lidar ratios) are derived at 532 nm by calculating the transmission loss through the cloud layer and then applying it to the attenuated backscatter profile in the layer, while volume depolarization ratios are computed using the ratio of the parallel and perpendicular polarized 1064-nm channels. The majority of the cloud layers yields a lidar ratio between 10 and 40 sr, with the lidar ratio frequency distribution centered at 25 sr for ice clouds and 16 sr for altocumulus clouds. On average, for ice clouds the lidar ratio slightly decreases with decreasing temperature, while the volume depolarization ratio increases significantly as temperatures decrease. Trends for liquid water clouds (altocumulus clouds) are also observed. Ultimately, these observed trends in optical properties, as functions of temperature and geographic location, should help to improve current parameterizations of extinction-to-backscatter ratio, which in turn should yield increased accuracy in cloud optical depth and radiative forcing estimates.

Corresponding author address: John E. Yorks, Code 613.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: john.e.yorks@nasa.gov
Save
  • Cairo, F., Di Donfrancesco G. , Adriani A. , Pulvirenti L. , and Fierli F. , 1999: Comparisons of various linear depolarization parameters measured by lidar. Appl. Opt., 38, 44254432.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., Sassen K. , and Welton E. J. , 2008: Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles. J. Atmos. Oceanic Technol., 25, 685700.

    • Search Google Scholar
    • Export Citation
  • Chen, W. N., Chiang C. W. , and Nee J. B. , 2002: Lidar ratio and depolarization ratio for cirrus clouds. Appl. Opt., 41, 64706476.

  • Del Guasta, M., 2001: Simulation of LIDAR returns from pristine and deformed hexagonal ice prisms in cold cirrus clouds by means of “face tracing.” J. Geophys. Res., 106, 12 58912 602.

    • Search Google Scholar
    • Export Citation
  • Del Guasta, M., Morandi M. , Stefanutti L. , Brechet J. , and Piquard J. , 1993: One year of cloud lidar data from Dumont d’Urville (Antarctica), 1, General overview of geometrical and optical properties. J. Geophys. Res., 98, 18 57518 587.

    • Search Google Scholar
    • Export Citation
  • Dubinsky, R. H., Carswell A. I. , and Pal S. R. , 1985: Determination of cloud microphysical properties by laser backscattering and extinction measurements. Appl. Opt., 24, 1614.

    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., Kuehn R. E. , and Holz R. E. , 2001: Measurements of backscatter phase function and depolarization in cirrus clouds made with the University of Wisconsin High Spectral Resolution Lidar. Advances in Laser Remote Sensing, A. Dabas, C. Loth, and J. Pelon, Eds., Ecole Polytechnique Paris, 255–257.

    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., Herman B. M. , and Reagan J. A. , 1972: Determination of aerosol height distributions with lidar. J. Appl. Meteor., 11, 482489.

    • Search Google Scholar
    • Export Citation
  • Harris, R., and Battrick B. , 2001: EarthCARE—Earth Clouds, Aerosols and Radiation Explorer. ESA Rep. SP-1257 (1), 130 pp.

  • Hu, Y., 2007: Depolarization ratio–effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination. Geophys. Res. Lett., 34, L11812, doi:10.1029/2007GL029584.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., Liu Z. , Winker D. , Vaughan M. , Noel V. , Bissonnette L. , Roy G. , and McGill M. , 2006: A simple relation between lidar multiple scattering and depolarization for water clouds. Opt. Lett., 31, 18091811.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2007: The depolarization–attenuated backscatter relation: CALIPSO lidar measurements vs. theory. Opt. Lett., 15, 53275332.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309.

  • Liu, Z., McGill M. , Hu Y. , Hostetler C. A. , Vaughan M. , and Winker D. , 2004: Validating lidar depolarization calibration using solar radiation scattered by ice clouds. Geosci. Remote Sens. Lett., 1, 157161, doi:10.1109/LGRS.2004.829613.

    • Search Google Scholar
    • Export Citation
  • Luers, J. K., and Eskridge R. E. , 1998: Use of radiosonde temperature data in climate studies. J. Climate, 11, 10021019.

  • McGill, M. J., Hlavka D. , Hart W. , Scott V. S. , Spinhirne J. , and Schmid B. , 2002: Cloud physics lidar: Instrument description and initial measurement results. Appl. Opt., 41, 37253734.

    • Search Google Scholar
    • Export Citation
  • McGill, M. J., Hlavka D. , Hart W. , Welton E. J. , and Campbell J. R. , 2003: Airborne lidar measurements of aerosol optical properties during SAFARI-2000. J. Geophys. Res., 108, 8493, doi:10.1029/2002DJ002370.

    • Search Google Scholar
    • Export Citation
  • McGill, M. J., Vaughan M. A. , Trepte C. R. , Hart W. D. , Hlavka D. L. , Winker D. M. , and Kuehn R. , 2007: Airborne validation of spatial properties measured by the CALIPSO lidar. J. Geophys. Res., 112, D20201, doi:10.1029/2007JD008768.

    • Search Google Scholar
    • Export Citation
  • Miller, M. A., 2008: The Cloud and Land Surface Interaction Campaign (CLASIC). Eos, Trans. Amer. Geophys. Union, 89 (23), Abstract H43D-03.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and Hovenier J. W. , 1995: Depolarization of light backscattered by randomly oriented nonspherical particles. Opt. Lett., 20, 13561358.

    • Search Google Scholar
    • Export Citation
  • Muller, D., Wandinger U. , Althausen D. , Mattis I. , and Ansmann A. , 1998: Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths. Appl. Opt., 37, 22602263.

    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., Illingworth A. J. , and Hogan R. J. , 2004: A technique for autocalibration of cloud lidar. J. Atmos. Oceanic Technol., 21, 777786.

    • Search Google Scholar
    • Export Citation
  • Palm, S. P., Hart W. D. , Hlavka D. L. , Ellsworth E. J. , Mahesh A. , Spinhirne J. D. , 2002: Geoscience Laser Altimeter System (GLAS) atmospheric data products. ICESat/GLAS Algorithm Theoretical Basis Document, 141 pp. [Available online at http://www.csr.utexas.edu/glas/pdf/glasatmos.atbdv4.2.pdf.]

    • Search Google Scholar
    • Export Citation
  • Pinnick, R. G., Jennings S. G. , Chylek P. , Ham C. , and Grandy W. T. , 1983: Backscattering and extinction in water clouds. J. Geophys. Res., 88 (C11), 67876796.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., Young S. A. , Manson P. J. , Patterson G. R. , Marsden S. C. , Austin R. T. , and Churnside J. H. , 1998: The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment. J. Atmos. Sci., 55, 19771996.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., Young S. A. , Austin R. T. , Patterson G. R. , Mitchell D. L. , and Miller S. D. , 2002: LIRAD observations of tropical cirrus clouds in MCTEX. Part I: Optical properties and detection of small particles in cold cirrus. J. Atmos. Sci., 59, 31453162.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., and Srinivasan J. , 2000: Net cloud radiative forcing at the top of the atmosphere in the Asian monsoon region. J. Climate, 13, 650657.

    • Search Google Scholar
    • Export Citation
  • Reichardt, J., Reichardt S. , Behrendt A. , and McGee T. J. , 2002a: Correlations among the optical properties of cirrus-cloud particles: Implications for spaceborne remote sensing. Geophys. Res. Lett., 29, 1668, doi:10.1029/2002GL014836.

    • Search Google Scholar
    • Export Citation
  • Reichardt, J., Reichardt S. , Hess M. , and McGee T. J. , 2002b: Correlations among the optical properties of cirrus-cloud particles: Microphysical interpretation. J. Geophys. Res., 107, 4562, doi:10.1029/2002JD002589.

    • Search Google Scholar
    • Export Citation
  • Sakai, T., Nagai T. , Nakazato M. , Mano Y. , and Matsumura T. , 2003: Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water vapor mixing ratio over Tsukuba. Appl. Opt., 42, 71037116.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72, 18481866.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Benson S. , 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical properties derived from lidar depolarization. J. Atmos. Sci., 58, 21032112.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Comstock J. M. , 2001: A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part III: Radiative properties. J. Atmos. Sci., 58, 21132127.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Benson R. P. , and Spinhirne J. D. , 2000: Tropical cirrus cloud properties derived from TOGA/COARE airborne polarization lidar. Geophys. Res. Lett., 27, 673676.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Arnott W. P. , Starr D.O’C. , Mace G. , Wang Z. , and Poellet M. , 2003: Midlatitude cirrus clouds derived from Hurricane Nora: A case study with implications for ice crystal nucleation and shape. J. Atmos. Sci., 60, 873891.

    • Search Google Scholar
    • Export Citation
  • Schotland, R. M., Sassen K. , and Stone R. J. , 1971: Observations by lidar of linear depolarization ratios by hydrometeors. J. Appl. Meteor., 10, 10111017.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and Thorpe A. J. , 2004: THORPEX: A global atmospheric research program for the beginning of the 21st century. WMO Bull., 53, 222226.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., Qin D. , Manning M. , Chen Z. , Marquis M. , Averyt K. B. , Tignor M. , and Miller H. L. , 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., Reagan J. A. , and Herman B. M. , 1980: Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique. J. Appl. Meteor., 19, 426438.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., Hart W. D. , and Hlavka D. L. , 1996: Cirrus infrared parameters and shortwave reflectance relations from observations. J. Atmos. Sci., 53, 14381458.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., Palm S. P. , Hart W. D. , Hlavka D. L. , and Welton E. J. , 2005: Cloud and aerosol measurements from GLAS: Overview and initial results. Geophys. Res. Lett., 32, L22S03, doi:10.1029/2005GL023507.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273.

  • Toon, O. B., and Coauthors, 2010: Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., and Coauthors, 2009: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26, 20342050.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., Liu Z. , McGill M. J. , Hu Y. , and Obland M. D. , 2010: On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP’s 1064 nm calibration assumptions using cloud physics lidar measurements. J. Geophys. Res., 115, D14206, doi:10.1029/2009JD013086.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Sassen K. , 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 16651682.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Sassen K. , 2002: Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part II: Midlatitude cirrus microphysical and radiative properties. J. Atmos. Sci., 59, 22912302.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and Lukas R. , 1992: TOGA COARE: The Coupled Ocean—Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Demoz B. , and Wang Z. , 2004: Subtropical cirrus cloud extinction to backscatter ratios measured by Raman Lidar during CAMEX-3. Geophys. Res. Lett., 31, L12105, doi:10.1029/2004GL020003.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2009a: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., Vaughan M. A. , Omar A. H. , Hu Y. , Powell K. A. , Liu Z. , Hunt W. H. , and Young S. A. , 2009b: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 11051119.

    • Search Google Scholar
    • Export Citation
  • Yorks, J. E., McGill M. , Rodier S. , Vaughan M. , Hu Y. , and Hlavka D. , 2009: Radiative effects of African dust and smoke observed from Clouds and the Earth’s Radiant Energy System (CERES) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. J. Geophys. Res., 114, D00H04, doi:10.1029/2009JD012000.

    • Search Google Scholar
    • Export Citation
  • Young, S. A., and Vaughan M. A. , 2009: The retrieval of profiles of particulate extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description. J. Atmos. Oceanic Technol., 26, 11051119.

    • Search Google Scholar
    • Export Citation
  • Young, S. A., Winker D. M. , Vaughan M. A. , Hu Y. and Kuehn R. E. , 2008: Part 4: Extinction retrieval algorithms. CALIOP Algorithm Theoretical Basis Doc. PC-SCI-202.01, 63 pp. [Available online at http://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part4_v1.0.pdf.]

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 930 243 19
PDF Downloads 603 134 2