Using Satellite Ocean Color Data to Derive an Empirical Model for the Penetration Depth of Solar Radiation (Hp) in the Tropical Pacific Ocean

Rong-Hua Zhang State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, Zhejiang, China, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Rong-Hua Zhang in
Current site
Google Scholar
PubMed
Close
,
Dake Chen State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, Zhejiang, China

Search for other papers by Dake Chen in
Current site
Google Scholar
PubMed
Close
, and
Guihua Wang State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, Zhejiang, China

Search for other papers by Guihua Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite-based ocean color measurements indicate clear evidence for bioclimate interactions in the tropical Pacific associated with El Niño–Southern Oscillation (ENSO). Recent modeling studies have demonstrated that ocean biology can potentially affect the climate through the penetration depth of solar radiation in the upper ocean (Hp), a primary parameter in coupling biology to physics in the ocean. At present, interannual variability in Hp and its related bioclimate feedback effects have not been adequately represented in coupled ocean–atmosphere models. In this work, chlorophyll (Chl) concentration data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), available since 1997, are used to characterize interannual Hp variability in the tropical Pacific and to quantify its relationships with physical fields, including sea surface temperature (SST) and sea level (SL). It is found that interannual Hp variability is dominated by ENSO signals, with the largest variability located in the central basin near the date line and a coherent relationship with SST. A singular value decomposition (SVD) analysis is adopted to extract interannual covariability patterns between Hp and SST during the period 1997–2007. Their close relationships are then utilized to construct an empirical anomaly model for Hp, allowing for its prognostic estimate in terms of SST anomalies without explicit involvement of a marine ecosystem model. Validation and sensitivity experiments indicate that the empirical model can reasonably well capture interannual Hp responses to SST anomalies in association with ENSO. The derived empirical Hp model offers a simple and an effective way to parameterize and represent the effects of Chl containing biomass on penetrative solar radiation in the tropical Pacific, demonstrating the dynamical implication of remotely sensed Chl data for bioclimate coupling studies. Further improvements and applications of the empirical Hp model to climate modeling are discussed.

Corresponding author address: Rong-Hua Zhang, M Square Office Building 950, 5825 University Research Court, ESSIC, University of Maryland, College Park, College Park, MD 20740. E-mail: rzhang@essic.umd.edu

Abstract

Satellite-based ocean color measurements indicate clear evidence for bioclimate interactions in the tropical Pacific associated with El Niño–Southern Oscillation (ENSO). Recent modeling studies have demonstrated that ocean biology can potentially affect the climate through the penetration depth of solar radiation in the upper ocean (Hp), a primary parameter in coupling biology to physics in the ocean. At present, interannual variability in Hp and its related bioclimate feedback effects have not been adequately represented in coupled ocean–atmosphere models. In this work, chlorophyll (Chl) concentration data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), available since 1997, are used to characterize interannual Hp variability in the tropical Pacific and to quantify its relationships with physical fields, including sea surface temperature (SST) and sea level (SL). It is found that interannual Hp variability is dominated by ENSO signals, with the largest variability located in the central basin near the date line and a coherent relationship with SST. A singular value decomposition (SVD) analysis is adopted to extract interannual covariability patterns between Hp and SST during the period 1997–2007. Their close relationships are then utilized to construct an empirical anomaly model for Hp, allowing for its prognostic estimate in terms of SST anomalies without explicit involvement of a marine ecosystem model. Validation and sensitivity experiments indicate that the empirical model can reasonably well capture interannual Hp responses to SST anomalies in association with ENSO. The derived empirical Hp model offers a simple and an effective way to parameterize and represent the effects of Chl containing biomass on penetrative solar radiation in the tropical Pacific, demonstrating the dynamical implication of remotely sensed Chl data for bioclimate coupling studies. Further improvements and applications of the empirical Hp model to climate modeling are discussed.

Corresponding author address: Rong-Hua Zhang, M Square Office Building 950, 5825 University Research Court, ESSIC, University of Maryland, College Park, College Park, MD 20740. E-mail: rzhang@essic.umd.edu
Save
  • Anderson, W. G., Gnanadesikan A. , Hallberg R. , Dunne J. , and Samuels B. L. , 2007: Impact of ocean color on the maintenance of the Pacific cold tongue. Geophys. Res. Lett., 34, L11609, doi:10.1029/2007GL030100.

    • Search Google Scholar
    • Export Citation
  • Ballabrera-Poy, J., Murtugudde R. G. , Christian J. R. , and Busalacchi A. J. , 2003: Signal-to-noise ratios of observed monthly tropical ocean color. Geophys. Res. Lett., 30, 1645, doi:10.1029/2003GL016995.

    • Search Google Scholar
    • Export Citation
  • Ballabrera-Poy, J., Murtugudde R. G. , Zhang R.-H. , and Busalacchi A. J. , 2007: Coupled ocean–atmosphere response to seasonal modulation of ocean color: Impact on interannual climate simulations in the tropical Pacific. J. Climate, 20, 353374.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., Latif M. , Graham N. , Flugel M. , Pazan S. , and White W. , 1993: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J. Climate, 6, 15451566.

    • Search Google Scholar
    • Export Citation
  • Chang, P., Ji L. , and Saravanan R. , 2001: A hybrid coupled model study of tropical Atlantic variability. J. Climate, 14, 361390.

  • Chavez, F. P., Strutton P. G. , and McPhaden M. , 1998: Biological-physical coupling in the central equatorial Pacific during the onset of the 1997-98 El Niño. Geophys. Res. Lett., 25, 35433546.

    • Search Google Scholar
    • Export Citation
  • Chavez, F. P., Strutton P. G. , Friedrich G. E. , Feely R. A. , Feldman G. C. , Foley D. G. , and McPhaden M. J. , 1999: Biological and chemical response of the equatorial Pacific ocean to the 1997–98 El Niño. Science, 286, 21262131.

    • Search Google Scholar
    • Export Citation
  • Chen, D., Rothstein L. M. , and Busalacchi A. J. , 1994: A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys. Oceanogr., 24, 21562179.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Anderson W. G. , 2009: Ocean water clarity and the ocean general circulation in a coupled climate model. J. Phys. Oceanogr., 39, 314332.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., Yeager S. , Lindsay K. , Moore K. , and Murtugudde R. , 2010: Quantification of the feedback between phytoplankton and ENSO in the Community Climate System Model. J. Climate, 23, 29162925.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., Menkes C. , Aumont O. , Gorgues T. , Bopp L. , André J.-M. , and Madec G. , 2007: Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Climate Dyn., 28, 503516.

    • Search Google Scholar
    • Export Citation
  • Lewis, M. R., Carr M. E. , Feldman G. C. , Esias W. , and McClain C. , 1990: Influence of penetrating solar radiation on the heat budget of the equatorial Pacific. Nature, 347, 543546.

    • Search Google Scholar
    • Export Citation
  • Löptien, U., Eden C. , Timmermann A. , and Dietze H. , 2009: Effects of biologically induced differential heating in an eddy-permitting coupled ocean-ecosystem model. J. Geophys. Res., 114, C06011, doi:10.1029/2008JC004936.

    • Search Google Scholar
    • Export Citation
  • Manizza, M., Le Quéré C. , Watson A. J. , and Buitenhuis E. T. , 2005: Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys. Res. Lett., 32, L05603, doi:10.1029/2004GL020778.

    • Search Google Scholar
    • Export Citation
  • Marzeion, B., Timmermann A. , Murtugudde R. , and Jin F.-F. , 2005: Biophysical feedbacks in the tropical Pacific. J. Climate, 18, 5870.

    • Search Google Scholar
    • Export Citation
  • McClain, C. R., Cleave M. L. , Feldman G. C. , Gregg W. W. , Hooker S. B. , and Kuring N. , 1998: Science quality SeaWiFS data for global biosphere research. Sea Technol., 39, 1016.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., and Coauthors, 2003: Potential feedbacks between Pacific Ocean ecosystems and internannual variations. Bull. Amer. Meteor. Soc., 84, 617633.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., Beauchamp J. , McClain C. R. , Lewis M. , and Busalacchi A. J. , 2002: Effects of penetrative radiation on the upper tropical ocean circulation. J. Climate, 15, 470486.

    • Search Google Scholar
    • Export Citation
  • Nakamoto, S., Kumar S. , Oberhuber J. , Ishizaka J. , Muneyama K. , and Frouin R. , 2001: Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys. Res. Lett., 28, 20212024.

    • Search Google Scholar
    • Export Citation
  • Nakamoto, S., and Coauthors, 2006: Potential feedback mechanism between phytoplankton and ocean circulation with oceanic radiative transfer processes influenced by phytoplankton-numerical ocean GCMs and an analytical solution. Global Climate Change and Response of Carbon Cycle in the Equatorial Pacific and Indian Oceans and Adjacent Land Masses, H. Kawahata and Y. Awaya, Eds., Elsevier Oceanography Series, Vol. 73, Elsevier, 255–272.

    • Search Google Scholar
    • Export Citation
  • Nerem, R. S., and Mitchum G. T. , 2002: Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements. Geophys. Res. Lett., 29, 1934, doi:10.1029/2002GL015037.

    • Search Google Scholar
    • Export Citation
  • North, G. R., Bell T. L. , Cahalan R. F. , and Moeng F. J. , 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and Simpson J. J. , 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956.

  • Reynolds, R. W., Rayner N. A. , Smith T. M. , Stokes D. C. , and Wang W. , 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and Zhu Z. , 1998: Sensitivity of the simulated annual cycle of sea surface temperature in the equatorial Pacific to sunlight penetration. J. Climate, 11, 19321950.

    • Search Google Scholar
    • Export Citation
  • Shell, K. M., Frouin R. , Nakamoto S. , and Somerville R. C. J. , 2003: Atmospheric response to solar radiation absorbed by phytoplankton. J. Geophys. Res., 108, 4445, doi:10.1029/2003JD003440.

    • Search Google Scholar
    • Export Citation
  • Stramska, M., and Stramski D. , 2005: Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean. Appl. Opt., 44, 17351747.

    • Search Google Scholar
    • Export Citation
  • Strutton, P. G., and Chavez F. P. , 2004: Biological heating in the equatorial Pacific: Observed variability and potential for real-time calculation. J. Climate, 17, 10971109.

    • Search Google Scholar
    • Export Citation
  • Sweeney, C., Gnanadesikan A. , Griffies S. M. , Harrison M. J. , Rosati A. J. , and Samuels B. L. , 2005: Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr., 35, 11031119.

    • Search Google Scholar
    • Export Citation
  • Syu, H.-H., Neelin J. D. , and Gutzler D. , 1995: Seasonal and interannual variability in a hybrid coupled GCM. J. Climate, 8, 21212143.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Jin F.-F. , 2002: Phytoplankton influences on tropical climate. Geophys. Res. Lett., 29, 2104, doi:10.1029/2002GL015434.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P., Maier-Reimer E. , Botzet M. , Jungclaus J. , Keenlyside N. , and Latif M. , 2006: Effects of ocean biology on the penetrative radiation in a coupled climate model. J. Climate, 19, 39733987.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and Cane M. A. , 1987: A model El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 22622278.

  • Zhang, R.-H., and Zebiak S. E. , 2004: An embedding method for improving interannual variability simulations in a hybrid coupled model of the tropical Pacific ocean–atmosphere system. J. Climate, 17, 27942812.

    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., and Busalacchi A. J. , 2008: Rectified effects of tropical instability wave (TIW)-induced atmospheric wind feedback in the tropical Pacific. Geophys. Res. Lett., 35, L05608, doi:10.1029/2007GL033028.

    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., and Busalacchi A. J. , 2009: Freshwater flux (FWF)-induced oceanic feedback in a hybrid coupled model of the tropical Pacific. J. Climate, 22, 853879.

    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., Rothstein L. M. , and Busalacchi A. J. , 1998: Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature, 391, 879882.

    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., Zebiak S. E. , Kleeman R. , and Keenlyside N. , 2005: Retrospective El Niño forecast using an improved intermediate coupled model. Mon. Wea. Rev., 133, 27772802.

    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., Busalacchi A. J. , and Murtugudde R. G. , 2006: Improving SST anomaly simulations in a layer ocean model with an embedded entrainment temperature submodel. J. Climate, 19, 46384663.

    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., Busalacchi A. J. , and DeWitt D. G. , 2008: The roles of atmospheric stochastic forcing (SF) and oceanic entrainment temperature (Te) in decadal modulation of ENSO. J. Climate, 21, 674704.

    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., Busalacchi A. J. , Wang X. J. , Ballabrera-Poy J. , Murtugudde R. , Hackert E. C. , and Chen D. , 2009: Role of ocean biology-induced climate feedback in the modulation of El Niño-Southern Oscillation (ENSO). Geophys. Res. Lett., 36, L03608, doi:10.1029/2008GL036568.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., Zhu J. , and Zhang R.-H. , 2007: Impact of altimetry data on ENSO ensemble initializations and predictions. Geophys. Res. Lett., 34, L13611, doi:10.1029/2007GL030451.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 415 160 31
PDF Downloads 224 82 2