Initial Ice Microparticle Sublimation Measurements from the Levitating Upper-Tropospheric Environmental Simulator (LUTES)

Nathan Magee The College of New Jersey, Ewing, New Jersey

Search for other papers by Nathan Magee in
Current site
Google Scholar
PubMed
Close
,
Kayla Spector The College of New Jersey, Ewing, New Jersey

Search for other papers by Kayla Spector in
Current site
Google Scholar
PubMed
Close
,
Yi-Hsuan Lin The College of New Jersey, Ewing, New Jersey

Search for other papers by Yi-Hsuan Lin in
Current site
Google Scholar
PubMed
Close
,
Corey Tong The College of New Jersey, Ewing, New Jersey

Search for other papers by Corey Tong in
Current site
Google Scholar
PubMed
Close
, and
John Beatty The College of New Jersey, Ewing, New Jersey

Search for other papers by John Beatty in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Initial ice particle sublimation data are presented from the new Levitating Upper-Tropospheric Environmental Simulator (LUTES) at The College of New Jersey. This experimental system mimics the conditions of a typical cirrus cloud in order to evaluate the phase-change kinetics of single ice particles. These ice particles are charged and then trapped in a levitating electrodynamic balance where they can be observed as they sublimate in a subsaturated atmosphere. Levitation and sublimation take place within a vacuum chamber, which is contained in a freezer at a temperature of −40° to −80°C and is capable of a reduced pressure of 10 mb. The sublimation rates of the ice particles are observed at a variety of temperature, humidity, and pressure conditions and are compared to sublimation rates predicted by particle-scale diffusion models. Initial measurements suggest that the diffusion models are capturing the essential sublimation behavior of the particles, but further measurements promise to inform lingering questions about the fundamental thermodynamics and surface processes of sublimating and growing ice particles under cirrus conditions.

Corresponding author address: Nathan Magee, Department of Physics, The College of New Jersey, 2000 Pennington Rd., Ewing, NJ 08628. E-mail: magee@tcnj.edu

Abstract

Initial ice particle sublimation data are presented from the new Levitating Upper-Tropospheric Environmental Simulator (LUTES) at The College of New Jersey. This experimental system mimics the conditions of a typical cirrus cloud in order to evaluate the phase-change kinetics of single ice particles. These ice particles are charged and then trapped in a levitating electrodynamic balance where they can be observed as they sublimate in a subsaturated atmosphere. Levitation and sublimation take place within a vacuum chamber, which is contained in a freezer at a temperature of −40° to −80°C and is capable of a reduced pressure of 10 mb. The sublimation rates of the ice particles are observed at a variety of temperature, humidity, and pressure conditions and are compared to sublimation rates predicted by particle-scale diffusion models. Initial measurements suggest that the diffusion models are capturing the essential sublimation behavior of the particles, but further measurements promise to inform lingering questions about the fundamental thermodynamics and surface processes of sublimating and growing ice particles under cirrus conditions.

Corresponding author address: Nathan Magee, Department of Physics, The College of New Jersey, 2000 Pennington Rd., Ewing, NJ 08628. E-mail: magee@tcnj.edu
Save
  • Bailey, M., and Hallett J. , 2004: Growth rates and habits of ice crystals between −20° and −70°C. J. Atmos. Sci., 61, 514544.

  • Bell, S. A., Gardiner T. , Gee R. M. , Stevens M. , Waterfield K. , and Wooley A. , 2004: An evaluation of performance of trace moisture measurement methods. National Physical Laboratory Report, Teddington, United Kingdom. [Available online at http://www.tigeroptics.com/pdf/Paper064NPL.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482.

  • Cantrell, W., Kostinski A. , Szedlak A. , and Johnson A. , 2011: Heat of freezing for supercooled water: Measurements at atmospheric pressure. J. Phys. Chem., 115, 57295734, doi:10.1021/jp103373u.

    • Search Google Scholar
    • Export Citation
  • Connolly, P., Flynn M. , Ulanowski Z. , Chourlatan T. W. , Gallagher M. , and Bower K. N. , 2007: Calibration of the cloud particle imager probes using calibration beads and ice crystal analogs: The depth of field. J. Atmos. Oceanic Technol., 24, 18601879.

    • Search Google Scholar
    • Export Citation
  • Cooper, S. J., and Garrett T. J. , 2010: Identification of small ice cloud particles using passive radiometric observations. J. Appl. Meteor. Climatol., 49, 23342347.

    • Search Google Scholar
    • Export Citation
  • Davis, E. J., 1997: A history of single aerosol particle levitation. Aerosol Sci. Technol., 26, 212254.

  • Fukuta, N., and Gramada C. M. , 2003: Vapor pressure measurement of supercooled water. J. Atmos. Sci., 60, 18711875.

  • Funke, H. H., Grissom B. L. , McGrew C. E. , and Raynor M. W. , 2003: Techniques for the measurement of trace moisture in high-purity electronic specialty gases. Rev. Sci. Instrum., 74, 39093933.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., 2007: Comments on “Effective radius of ice cloud particle populations derived from aircraft probes.” J. Atmos. Oceanic Technol., 24, 14951503.

    • Search Google Scholar
    • Export Citation
  • Gierens, K. M., and Bretl S. , 2009: Analytical treatment of ice sublimation and test of sublimation parameterisations in two-moment ice microphysics model. Atmos. Chem. Phys., 9, 74817490.

    • Search Google Scholar
    • Export Citation
  • Gierens, K. M., Monier M. , and Gayet J.-F. , 2003: The deposition coefficient and its role for cirrus clouds. J. Geophys. Res., 108, 4069, doi:10.1029/2001JD001558.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., Lamb D. , and Carver R. , 2009: Parameterization of surface kinetic effects for bulk microphysical models: Influences on simulated cirrus dynamics and structure. J. Geophys. Res., 114, D06212, doi:10.1029/2008JD011050.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Schmitt C. , Bansemer A. , van Zadelhoff G. J. , McGill M. J. , Twohy C. , and Baumgardner D. , 2006: Effective radius of ice cloud particle populations derived from aircraft probes. J. Atmos. Oceanic Technol., 23, 361380.

    • Search Google Scholar
    • Export Citation
  • Hu, D., and Makin B. , 1991: Study of a five-electrode quadrupole levitation system; Theoretical aspects. IEE Proc., 138A, 320336.

  • Jensen, E. J., and Coauthors, 2009: On the importance of small ice crystals in tropical anvil cirrus. Atmos. Chem. Phys., 9, 55195537.

    • Search Google Scholar
    • Export Citation
  • Krämer, M., and Coauthors, 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 35053522.

  • Magee, N., Moyle A. M. , and Lamb D. , 2006: Experimental determination of the deposition coefficient of small cirrus-like ice crystals near −50°C. Geophys. Res. Lett., 33, L17813, doi:10.1029/2006GL026665.

    • Search Google Scholar
    • Export Citation
  • Marquart, S., Ponater M. , Mager F. , and Sausen R. , 2003: Future development of contrail cover, optical depth, and radiative forcing: Impacts of increasing air traffic and climate change. J. Climate, 16, 28902904.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., Um J. , Freer M. , Baumgardner D. , Kok G. L. , and Mace G. , 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029/2007GL029865.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., Vömel H. , Whiteman D. N. , Lesht B. M. , Schmidlin F. J. , and Russo F. , 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res., 111, D09S10, doi:10.1029/2005JD006083.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., Rasch P. , Ivanova D. , McFarquhar G. , and Nousiainen T. , 2008: Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations. Geophys. Res. Lett., 35, L09806, doi:10.1029/2008GL033552.

    • Search Google Scholar
    • Export Citation
  • Monier, M., Wobrock W. , Gayet J.-F. , and Flossmann A. , 2006: Development of a detailed microphysics cirrus model tracking aerosol particles’ histories for interpretation of the recent INCA campaign. J. Atmos. Sci., 63, 504525.

    • Search Google Scholar
    • Export Citation
  • Moyer, E. J., Sayres D. S. , Engel G. S. , St. Clair J. M. , Keutsch F. N. , Allen N. T. , Kroll J. M. , and Anderson J. G. , 2008: Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy. Appl. Phys., 92B, 467474.

    • Search Google Scholar
    • Export Citation
  • Murphy, D., and Koop T. , 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131, 15391565.

    • Search Google Scholar
    • Export Citation
  • Nelson, J., 1998: Sublimation of ice crystals. J. Atmos. Sci., 55, 910919.

  • Peter, T., Marcolli C. , Spichtinger P. , Corti T. , Baker M. , and Koop T. , 2006: When dry air is too humid. Science, 314, 13991402.

  • Prabhakara, C., Fraser R. S. , Dalu G. , Wu M.-L. C. , Curran R. J. , and Styles T. , 1988: Thin cirrus clouds: Seasonal distribution over oceans deduced from Nimbus-4 IRIS. J. Appl. Meteor., 27, 379399.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and Klett J. D. , 1997. Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Sayres, D. S., and Coauthors, 2009: A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere. Rev. Sci. Instrum., 80, 044102, doi:10.1063/1.3117349.

    • Search Google Scholar
    • Export Citation
  • Scheuer, E., Dibb J. E. , Twohy C. , Rogers D. C. , Heymsfield A. J. , and Bansemer A. , 2010: Evidence of nitric acid uptake in warm cirrus anvil clouds during the NASA TC4 campaign. J. Geophys. Res., 115, D00J03, doi:10.1029/2009JD012716.

    • Search Google Scholar
    • Export Citation
  • Shaw, R., Lamb D. , and Moyle A. M. , 2000: An electrodynamic levitation system for studying individual cloud particles under upper-tropospheric conditions. J. Atmos. Oceanic Technol., 17, 940948.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 348 170 29
PDF Downloads 105 26 0