• Bindoff, N. L., and Coauthors, 2007: Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 385–432.

    • Search Google Scholar
    • Export Citation
  • Carval, T., and Coauthors, 2008: Argo data management user’s manual, version 2.1, 60 pp.

  • Cazenave, A., Dominh K. , Guinehut S. , Berthier E. , Llovel W. , Ramillien G. , Ablain M. , and Larnicol G. , 2009: Sea level budget over 2003-2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet. Change, 65, 8388.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., White N. J. , Aarup T. , Wilson W. S. , Woodworth P. L. , Domingues C. M. , Hunter J. R. , and Lambeck K. , 2008: Understanding global sea levels: Past, present and future. Sustainability Sci., 3, 922, doi:10.1007/s11625-008-0042-4.

    • Search Google Scholar
    • Export Citation
  • Cleveland, W. S., 1979: Robust locally-weighted regression and smoothing scatterplots. J. Amer. Stat. Assoc., 74, 829836.

  • Cleveland, W. S., 1981: LOWESS: A program for smoothing scatterplots by robust locally-weighted regression. Amer. Stat., 35, 54.

  • Domingues, C. M., Church J. A. , White N. J. , Gleckler P. J. , Wijffels S. E. , Barker P. M. , and Dunn J. R. , 2008: Improved estimates of upper-ocean warming and multi-decadal sea level rise. Nature, 453, 10901094, doi:10.1038/nature07080.

    • Search Google Scholar
    • Export Citation
  • Gould, J., 2005: From swallow floats to Argo—The development of neutrally buoyant floats. Deep-Sea Res. II, 52, 529543.

  • Gould, J., and Coauthors, 2004: Argo profiling floats bring new era of in situ ocean observations. Eos, Trans. Amer. Geophys. Union, 85, 185, doi:10.1029/2004EO190002.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and Koltermann K. P. , 2007: How much is the ocean really warming? Geophys. Res. Lett., 34, L01610, doi:10.1029/2006GL027834.

    • Search Google Scholar
    • Export Citation
  • Guinehut, S., Coatanoan C. , Dhomps A. L. , Le Traon P. Y. , and Larnicol G. , 2009: On the use of satellite altimeter data in Argo quality control. J. Atmos. Oceanic Technol., 26, 395402.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Earth's energy imbalance: Confirmation and implications. Science, 308, 14311435, doi:10.1126/science.1110252.

    • Search Google Scholar
    • Export Citation
  • Ingleby, B., and Huddleston M. , 2007: Quality control of ocean temperature and salinity profiles—Historical and real-time data. J. Mar. Syst., 65, 158175.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., and Kimoto M. , 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287299.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., Kushnir Y. , and Cane M. A. , 2000: Reduced space optimal interpolation of historical marine sea level pressure. J. Climate, 13, 29873002.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, T., and Johnson G. C. , 2007: Argo float pressure offset adjustment recommendations. Eighth Meeting of the Int. Argo Steering Team, Paris, France, IOC, 21–39. [Available online at http://prelude.ocean.washington.edu/dmqc3/pub/argo_float_press_offset_adjustment.pdf.]

    • Search Google Scholar
    • Export Citation
  • Leuliette, E. W., and Miller L. , 2009: Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys. Res. Lett., 36, L04608, doi:10.1029/2008GL036010.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., Antonov J. I. , Boyer T. P. , Garcia H. E. , and Locarnini R. A. , 2005: Linear trends of zonally averaged thermosteric, halosteric, and total steric sea level for individual ocean basins and the world ocean, (1955–1959)–(1994–1998). Geophys. Res. Lett., 32, L16601, doi:10.1029/2005GL023761.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., Antonov J. I. , Boyer T. P. , Locarnini R. A. , Garcia H. E. , and Mishonov A. V. , 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., Willis J. K. , and Johnson G. C. , 2006: Recent cooling of the upper ocean. Geophys. Res. Lett., 33, L18604, doi:10.1029/2006GL027033.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., Solomon S. , Portmann R. W. , Rosenlof K. H. , Forster P. M. , and Wong T. , 2009: An observationally based energy balance for the Earth since 1950. J. Geophys. Res., 114, D17107, doi:10.1029/2009jd012105.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Gilson J. , 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, doi:10.1016/j.pocean.2009.03.004.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 1999: On the design and implementation of Argo: An initial plan for a global array of profiling floats. International CLIVAR Project Office Rep. 21, GODAE International Project Office Rep. 5., 32 pp.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2009: The Argo program: Observing the global oceans with profiling floats. Oceanography, 22 (2), 3443.

  • Solomon, S., and Coauthors, 2007: Technical summary. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 19–91.

    • Search Google Scholar
    • Export Citation
  • Uchida, H., and Imawaki S. , 2008: Estimation of the sea level trend south of Japan by combining satellite altimeter data with in-situ hydrographic data. J. Geophys. Res., 113, C09035, doi:10.1029/2008JC004796.

    • Search Google Scholar
    • Export Citation
  • Uchida, H., Kawano T. , and Fukasawa M. , 2008: In-situ calibration of moored CTDs used for monitoring abyssal water. J. Atmos. Oceanic Technol., 25, 16951702.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., Willis J. , Domingues C. M. , Barker P. , White N. J. , Gronell A. , Ridgway K. , and Church J. A. , 2008: Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea level rise. J. Climate, 21, 56575672.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., Lyman J. M. , Johnson G. C. , and Gilson J. , 2007: Correction to ‘‘Recent cooling of the upper ocean’’. Geophys. Res. Lett., 34, L16601, doi:10.1029/2007GL030323.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., Chambers D. P. , and Nerem R. , 2008: Assessing the globally averaged sea level budget on seasonal to interannual timescales. J. Geophys. Res., 113, C06015, doi:10.1029/2007JC004517.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 579 336 47
PDF Downloads 266 135 13

Pressure Sensor Drifts in Argo and Their Impacts

View More View Less
  • 1 Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia
  • | 2 Centre for Australian Weather and Climate Research, Hobart, Tasmania, Australia
  • | 3 Centre for Australian Weather and Climate Research, Aspendale, Victoria, Australia
  • | 4 Centre for Australian Weather and Climate Research, Hobart, Tasmania, Australia
Restricted access

Abstract

In recent years, autonomous profiling floats have become the prime component of the in situ ocean observing system through the implementation of the Argo program. These data are now the dominant input to estimates of the evolution of the global ocean heat content and associated thermosteric sea level rise. The Autonomous Profiling Explorer (APEX) is the dominant type of Argo float (~62%), and a large portion of these floats report pressure measurements that are uncorrected for sensor drift, the size and source of which are described herein. The remaining Argo float types are designed to automatically self-correct for any pressure drift. Only about 57% of the APEX float profiles (or ~38% Argo profiles) can be corrected, but this typically has not been done by the data centers that distribute the data (as of January 2009). A pressure correction method for APEX floats is described and applied to the Argo dataset. A comparison between estimates using the corrected Argo dataset and the publically available uncorrected dataset (as of January 2009) reveals that the pressure corrections remove significant regional errors from ocean temperature, salinity, and thermosteric sea level fields. In the global mean, 43% of uncorrectable APEX float profiles (or ~28% Argo profiles) appear to largely offset the effect of the correctable APEX float profiles with positive pressure drifts. While about half of the uncorrectable APEX profiles can, in principle, be recovered in the near future (after inclusion of technical information that allows for corrections), the other half have negative pressure drifts truncated to zero (resulting from firmware limitations), which do not allow for corrections. Therefore, any Argo pressure profile that cannot be corrected for biases should be excluded from global change research. This study underscores the ongoing need for careful analyses to detect and remove subtle but systematic errors in ocean observations.

Corresponding author address: Paul Barker, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, Tasmania 7001 Australia. E-mail: paul.barker@csiro.au

Abstract

In recent years, autonomous profiling floats have become the prime component of the in situ ocean observing system through the implementation of the Argo program. These data are now the dominant input to estimates of the evolution of the global ocean heat content and associated thermosteric sea level rise. The Autonomous Profiling Explorer (APEX) is the dominant type of Argo float (~62%), and a large portion of these floats report pressure measurements that are uncorrected for sensor drift, the size and source of which are described herein. The remaining Argo float types are designed to automatically self-correct for any pressure drift. Only about 57% of the APEX float profiles (or ~38% Argo profiles) can be corrected, but this typically has not been done by the data centers that distribute the data (as of January 2009). A pressure correction method for APEX floats is described and applied to the Argo dataset. A comparison between estimates using the corrected Argo dataset and the publically available uncorrected dataset (as of January 2009) reveals that the pressure corrections remove significant regional errors from ocean temperature, salinity, and thermosteric sea level fields. In the global mean, 43% of uncorrectable APEX float profiles (or ~28% Argo profiles) appear to largely offset the effect of the correctable APEX float profiles with positive pressure drifts. While about half of the uncorrectable APEX profiles can, in principle, be recovered in the near future (after inclusion of technical information that allows for corrections), the other half have negative pressure drifts truncated to zero (resulting from firmware limitations), which do not allow for corrections. Therefore, any Argo pressure profile that cannot be corrected for biases should be excluded from global change research. This study underscores the ongoing need for careful analyses to detect and remove subtle but systematic errors in ocean observations.

Corresponding author address: Paul Barker, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, Tasmania 7001 Australia. E-mail: paul.barker@csiro.au
Save