• Barnes, J., , Kaplan T. , , Vömel H. , , and Read W. , 2008: NASA/Aura/Microwave Limb Sounder water vapor validation at Mauna Loa Observatory by Raman lidar. J. Geophys. Res., 113, D15S03, doi:10.1029/2007JD008842.

    • Search Google Scholar
    • Export Citation
  • Blanchet, J., , and Girard E. , 1995: Water vapor-temperature feedback in the formation of continental Arctic air: Its implication for climate. Sci. Total Environ., 160, 793802.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R., , Melfi S. , , Whiteman D. , , and Evans K. , 1995: A comparison of water vapor measurements made by Raman lidar and radiosondes. J. Atmos. Oceanic Technol., 12, 11771195.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M. de F., , and Shine K. P. , 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, 1086, doi:10.1029/2001GL013909.

    • Search Google Scholar
    • Export Citation
  • Halldorsson, T., , and Langerholc J. , 1978: Geometrical form factors for the lidar function. Appl. Opt., 17, 240244.

  • Houghton, J. T., , Ding Y. , , Griggs D. J. , , Noguer M. , , van der Linden P. J. , , Dai X. , , Maskell K. , , and Johnson C. A. , Eds., 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Hyland, R., , and Wexter A. , 1983: Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K. ASHRAE Trans., 89, 500519.

    • Search Google Scholar
    • Export Citation
  • Leblanc, T., , and McDermid I. , 2008a: Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements. Appl. Opt., 47, 55925603.

    • Search Google Scholar
    • Export Citation
  • Leblanc, T., , and McDermid I. , 2008b: First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California. J. Atmos. Oceanic Technol., 25, 14541462.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L., , Vömel H. , , and Paukkunen A. , 2001: Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J. Atmos. Oceanic Technol., 18, 135156.

    • Search Google Scholar
    • Export Citation
  • Olsen, E. T., , Fishbein E. , , Granger S. , , Lee S.-Y. , , Manning E. , , Weiler M. , , Blaisdell J. , , and Susskind J. , 2007: AIRS/AMSU/HSB version 5 data release user guide. NASA Goddard Space Flight Center, 68 pp. [Available online at http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v5_docs/AIRS_V5_Release_User_Docs/V5_Data_Release_UG.pdf.]

    • Search Google Scholar
    • Export Citation
  • Read, W. G., and Coauthors, 2007: Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation. J. Geophys. Res., 112, D24S35, doi:10.1029/2007JD008752.

    • Search Google Scholar
    • Export Citation
  • Sherlock, V., , Garnier A. , , Hauchecorne A. , , and Keckhut P. , 1999a: Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor. Appl. Opt., 38, 58385850.

    • Search Google Scholar
    • Export Citation
  • Sherlock, V., , Hauchecorne A. , , and Lenoble J. , 1999b: Methodology for the independent calibration of Raman backscatter water-vapor lidar systems. Appl. Opt., 38, 58165837.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , Qin D. , , Manning M. , , Marquis M. , , Averyt K. , , Tignor M. M. B. , , Miller H. L. Jr., , and Chen, Z. Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , Rosenlof K. H. , , Portmann R. W. , , Daniel J. S. , , Davis S. M. , , Sanford T. J. , , and Plattner G.-K. , 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223.

    • Search Google Scholar
    • Export Citation
  • Stenke, A., , and Grewe V. , 2005: Simulation of stratospheric water vapor trends: Impact on stratospheric ozone chemistry. Atmos. Chem. Phys., 5, 12571272.

    • Search Google Scholar
    • Export Citation
  • Thayer, J., , Nielsen N. , , Warren R. , , Heinselman C. , , and Sohn J. , 1997: Rayleigh lidar system for middle atmosphere research in the Arctic. Opt. Eng., 36, 20452061.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., , Fujiwara M. , , and Shiotani M. , 2003: The behavior of the snow white chilled-mirror hygrometer in extremely dry conditions. J. Atmos. Oceanic Technol., 20, 15601567.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., , David D. E. , , and Smith K. , 2007: Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations. J. Geophys. Res., 112, D08305, doi:10.1029/2006JD007224.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D., 2003a: Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations. Appl. Opt., 42, 25712592.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D., 2003b: Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols. Appl. Opt., 42, 25932608.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D., , Berkoff T. , , Turner D. , , Tooman T. , , Ferrare R. , , and Heilman L. , 2000: Research efforts in the absolute calibration of a Raman water vapor lidar. NASA Goddard Space Flight Center, 16 pp. [Available online at http://ramanlidar.gsfc.nasa.gov/activities/publications/data/dnws_Calibration_poster.pdf.]

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 5
PDF Downloads 6 6 3

Raman Lidar Profiling of Tropospheric Water Vapor over Kangerlussuaq, Greenland

View More View Less
  • 1 Department of Atmospheric and Oceanic Science, University of Colorado, Boulder, Colorado
  • | 2 Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

A new measurement capability has been implemented in the Arctic Lidar Technology (ARCLITE) system at the Sondrestrom upper-atmosphere research facility near Kangerlussuaq, Greenland (67.0°N, 50.9°W), enabling estimates of atmospheric water vapor through the troposphere. A balloon campaign was simultaneously conducted to calibrate and validate the new lidar water vapor measurements. Initial results show that height-resolved profiles up to 10 km with better than 10% error are obtained with 30-min integration and 250-m height resolution. Comparison of the lidar observations with water vapor profiles retrieved by the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua satellite agree within the error associated with each measurement. These new observations offer more routine measurements of water vapor in the Arctic to complement measurements related to the Arctic’s hydrologic cycle.

Corresponding author address: Ryan Reynolds Neely III, University of Colorado, ATOC, UCB 311, Boulder, CO 80309-0311. E-mail: ryan.neely@colorado.edu

Abstract

A new measurement capability has been implemented in the Arctic Lidar Technology (ARCLITE) system at the Sondrestrom upper-atmosphere research facility near Kangerlussuaq, Greenland (67.0°N, 50.9°W), enabling estimates of atmospheric water vapor through the troposphere. A balloon campaign was simultaneously conducted to calibrate and validate the new lidar water vapor measurements. Initial results show that height-resolved profiles up to 10 km with better than 10% error are obtained with 30-min integration and 250-m height resolution. Comparison of the lidar observations with water vapor profiles retrieved by the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua satellite agree within the error associated with each measurement. These new observations offer more routine measurements of water vapor in the Arctic to complement measurements related to the Arctic’s hydrologic cycle.

Corresponding author address: Ryan Reynolds Neely III, University of Colorado, ATOC, UCB 311, Boulder, CO 80309-0311. E-mail: ryan.neely@colorado.edu
Save