• Bouffard, J., , Pascual A. , , Ruiz S. , , Faugère Y. , , and Tintoré J. , 2010: Coastal and mesoscale dynamics characterization using altimetry and gliders: A case study in the Balearic Sea. J. Geophys. Res., 115, C10029, doi:10.1029/2009JC006087.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 2009: Salinity estimation using an un-pumped conductivity cell on an autonomous underwater glider. Extended Abstracts, Fourth EGO Conf., Larnaca, Cyprus, EGO, P9.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., , and Picklo J. J. , 1990: Thermal inertia of conductivity cells: Observations with a Sea-Bird cell. J. Atmos. Oceanic Technol., 7, 756768.

    • Search Google Scholar
    • Export Citation
  • Mensah, V., , Le Menn M. , , and Morel Y. , 2009: Thermal mass correction for the evaluation of salinity. J. Atmos. Oceanic Technol., 26, 665672.

    • Search Google Scholar
    • Export Citation
  • Morison, J., , Andersen R. , , Larson N. , , D’Asaro E. , , and Boyd T. , 1994: The correction for thermal-lag effects in Sea-Bird CTD data. J. Atmos. Oceanic Technol., 11, 11511164.

    • Search Google Scholar
    • Export Citation
  • Pascual, A., , Ruiz S. , , and Tintoré J. , 2010: Combining new and conventional sensors to study the Balearic Current. Sea Technol., 51 (7), 3236.

    • Search Google Scholar
    • Export Citation
  • Pinot, J.-M., , López-Jurado J. L. , , and Riera M. , 2002: The CANALES experiment (1996–98). Interannual, seasonal, and mesoscale variability of the circulation in the Balearic Channels. Prog. Oceanogr., 55, 335370.

    • Search Google Scholar
    • Export Citation
  • Ruiz, S., , Pascual A. , , Garau B. , , Faugere Y. , , Alvarez A. , , and Tintoré J. , 2009: Mesoscale dynamics of the Balearic Front, integrating glider, ship and satellite data. J. Mar. Syst., 78, S3S16, doi:10.1016/j.jmarsys.2009.01.007.

    • Search Google Scholar
    • Export Citation
  • Sea-Bird Electronics, cited 2008: Glider payload CTD (preliminary). [Available online at http://www.seabird.com/products/spec_sheets/GliderPayloadCTDdata.htm.]

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1989: The SLOCUM mission. Oceanography, 19, 2225.

  • UNESCO, 1981: Tent report of the Joint Panel on Oceanographic Tables and Standards. UNESCO Tech. Papers in Marine Science 36, 24 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 156 156 40
PDF Downloads 114 114 31

Thermal Lag Correction on Slocum CTD Glider Data

View More View Less
  • 1 SOCIB, Mallorca, Spain
  • | 2 IMEDEA (CSIC-UIB), Mallorca, Spain
  • | 3 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 4 IMCS, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
© Get Permissions
Restricted access

Abstract

In this work a new methodology is proposed to correct the thermal lag error in data from unpumped CTD sensors installed on Slocum gliders. The advantage of the new approach is twofold: first, it takes into account the variable speed of the glider; and second, it can be applied to CTD profiles from an autonomous platform either with or without a reference cast. The proposed methodology finds values for four correction parameters that minimize the area between two temperature–salinity curves given by two CTD profiles. A field experiment with a Slocum glider and a standard CTD was conducted to test the method. Thermal lag–induced salinity error of about 0.3 psu was found and successfully corrected.

Corresponding author address: Bartolomé Garau, ICTS SOCIB Parc Bit, Naorte, Bloc A 2p. pta 3, Palma de Mallorca, Spain. E-mail: tgarau@socib.es

Abstract

In this work a new methodology is proposed to correct the thermal lag error in data from unpumped CTD sensors installed on Slocum gliders. The advantage of the new approach is twofold: first, it takes into account the variable speed of the glider; and second, it can be applied to CTD profiles from an autonomous platform either with or without a reference cast. The proposed methodology finds values for four correction parameters that minimize the area between two temperature–salinity curves given by two CTD profiles. A field experiment with a Slocum glider and a standard CTD was conducted to test the method. Thermal lag–induced salinity error of about 0.3 psu was found and successfully corrected.

Corresponding author address: Bartolomé Garau, ICTS SOCIB Parc Bit, Naorte, Bloc A 2p. pta 3, Palma de Mallorca, Spain. E-mail: tgarau@socib.es
Save