• Banta, R. M., and Coauthors, 2005: A bad air day in Houston. Bull. Amer. Meteor. Soc., 86, 657669.

  • Bao, J.-W., , Michelson S. A. , , McKeen S. A. , , and Grell G. A. , 2005: Meteorological evaluation of a weather–chemistry forecasting model using observations from the TEXAS AQS 2000 field experiment. J. Geophys. Res., 110, D21105, doi:10.1029/2004JD005024.

    • Search Google Scholar
    • Export Citation
  • Bornstein, R. D., 1987: Mean diurnal circulation and thermodynamic evolution of urban boundary layers. Modeling the Urban Boundary Layer, Amer. Meteor. Soc., 53–93.

    • Search Google Scholar
    • Export Citation
  • Bornstein, R. D., , and Oke T. , 1981: Influence of pollution on urban climatology. Adv. Environ. Sci. Eng., 3, 171202.

  • Bornstein, R. D., , and Lin Q. , 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ., 34, 507516.

    • Search Google Scholar
    • Export Citation
  • Brown, M. J., 2000: Urban parameterizations for mesoscale meteorological models. Mesoscale Atmospheric Dispersion, Z. Boybeyi, Ed., WIT Press, 193–255.

    • Search Google Scholar
    • Export Citation
  • Burian, S. J., , and Ching J. , 2009: Development of gridded fields of urban canopy parameters for advanced urban meteorological and air quality models. EPA Rep. EPA/600/R-10/007, 73 pp. [Available online at http://ams.confex.com/ams/pdfpapers/79765.pdf.]

    • Search Google Scholar
    • Export Citation
  • Cheng, F. Y., , and Byun D. W. , 2008: Application of high resolution land use and land cover data for atmospheric modeling in the Houston–Galveston metropolitan area. Part I: Meteorological simulation results. Atmos. Environ., 42, 77957811.

    • Search Google Scholar
    • Export Citation
  • Crossett, K. M., , Culliton T. J. , , Wiley P. C. , , and Goodspeed T. R. , 2004: Population trends along the coastal United States: 1980–2008. U.S. Department of Commerce Coastal Trends Reports Series, 54 pp. [Available online at http://oceanservice.noaa.gov/programs/mb/pdfs/coastal_pop_trends_complete.pdf.]

    • Search Google Scholar
    • Export Citation
  • Dandou, A., , Tombrou M. , , and Soulakellis N. , 2009: The influence of the city of Athens on the evolution of the sea-breeze front. Bound.-Layer Meteor., 131, 3551.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., , Mitchell K. E. , , Lin Y. , , Rogers E. , , Grummann P. , , Koren V. , , Gayno G. , , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., , and Dailey P. S. , 2001: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part II: Alongshore ambient flow. Mon. Wea. Rev., 129, 20572072.

    • Search Google Scholar
    • Export Citation
  • Glickman, T. S., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp.

  • Haurwitz, B., 1947: Comments on the sea-breeze circulation. J. Meteor., 4, 18.

  • Hjelmfelt, M. R., 1982: Numerical simulation of the effects of St. Louis on mesoscale boundary-layer airflow and vertical motion: Simulations of urban vs non-urban effects. J. Appl. Meteor., 21, 12391257.

    • Search Google Scholar
    • Export Citation
  • Holt, T., , and Pullen J. , 2007: Urban canopy modeling of the New York City metropolitan area: A comparison and validation of single- and multilayer parameterizations. Mon. Wea. Rev., 135, 19061930.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 511 pp.

  • Jeyachandran, I., , Stetson S. , , and Burian S. J. , 2010: Estimating urban canopy parameters using synthetic aperture radar data. J. Appl. Meteor. Climatol., 49, 732747.

    • Search Google Scholar
    • Export Citation
  • Kitada, T., , Okamura K. , , and Tanaka S. , 1998: Effects of topography and urbanization on local winds and thermal environment in the Nohbi Plain, coastal region of central Japan: A numerical analysis by mesoscale meteorological model with a k–ε turbulence model. J. Appl. Meteor., 37, 10261046.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., , and Kimura F. , 2004: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteor., 43, 18991910.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., , Kimura F. , , Hirakuchi H. , , and Mizutori M. , 2000: The effects of land-use alteration on the sea-breeze and daytime heat island in the Tokyo metropolitan area. J. Meteor. Soc. Japan, 78, 405420.

    • Search Google Scholar
    • Export Citation
  • Lo, J. C. F., , Lau A. K. H. , , Chen F. , , Fung J. C. H. , , and Leung K. K. M. , 2007: Urban modification in a mesoscale model and the effects on the local circulation in the Pearl River Delta region. J. Appl. Meteor. Climatol., 46, 457476.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. D., 1970: A numerical study of the effect of a coastal irregularity on the sea breeze. J. Appl. Meteor., 9, 767777.

  • Miao, S., , Chen F. , , LeMone M. , , Tewari M. , , Li Q. , , and Wang Y. , 2009: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48, 484501.

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., 2000: The Houston heat pump: Modulation of a land–sea-breeze by an urban heat island. Proc. 2000 PSU/NCAR Mesoscale Modeling System Users’ Workshop, Boulder, CO, NCAR. [Available online at http://box.mmm.ucar.edu/mm5/workshop/ws00/N-G-heat.pdf.]

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., and Coauthors, 2008: Multi-sensor estimation of mixing heights over a coastal city. J. Appl. Meteor. Climatol., 47, 2743.

    • Search Google Scholar
    • Export Citation
  • Ohashi, Y., , and Kida H. , 2002: Local circulations developed in the vicinity of both coastal and inland urban areas: A numerical study with a mesoscale atmospheric model. J. Appl. Meteor., 41, 3045.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1981: Canyon geometry and nocturnal urban heat island: Comparison of scale model and field observations. J. Climatol., 1, 237254.

    • Search Google Scholar
    • Export Citation
  • Orville, R., and Coauthors, 2001: Enhancement of cloud-to-ground lightning over Houston Texas. Geophys. Res. Lett., 28, 25972600.

  • Parrish, D. D., and Coauthors, 2009: Overview of the Second Texas Air Quality Study (TexAQS II) and the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). J. Geophys. Res., 114, D00F13, doi:10.1029/2009JD011842.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , Cotton W. R. , , and Adegoke J. O. , 2003: Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteor., 42, 716738.

    • Search Google Scholar
    • Export Citation
  • Shem, W., , and Shepherd J. M. , 2009: On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res., 92, 172189.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact.,9. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., , Carter W. M. , , Manyin M. , , Messen D. , , and Burian S. , 2010: The impact of urbanization on current and future coastal convection: A case study for Houston. Environ. Plann., 37B, 284304.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1994: Sea-Breeze and Local Wind. Cambridge University Press, 234 pp.

  • Skamarock, W. C., , Klemp J. B. , , Dudhia J. , , Gill D. O. , , Barker D. M. , , Wang W. , , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Souch, C., , and Grimmond S. , 2006: Applied climatology: Urban climate. Prog. Phys. Geogr., 30, 270279.

  • Taha, H., 2008: Episodic performance and sensitivity of the urbanized MM5 (uMM5) to perturbations in surface properties in Houston Texas. Bound.-Layer Meteor., 127, 193218, doi:10.1007/s10546-007-9258-6.

    • Search Google Scholar
    • Export Citation
  • Tewari, M., , Chen F. , , Kusaka H. , , and Mio S. , 2007: Coupled WRF/Unified Noah/Urban-Canopy Modeling System. NCAR Research Applications Laboratory, 22 pp. [Available online at http://www.rap.ucar.edu/research/land/technology/urban/WRF-LSM-Urban.pdf.]

    • Search Google Scholar
    • Export Citation
  • United Nations Population Fund, 2007: 2007 annual report. UNFPA Information and External Relations Division, 30 pp. [Available online at http://www.unfpa.org/upload/lib_pub_file/777_filename_unfpa_ar_2007_web.pdf.]

    • Search Google Scholar
    • Export Citation
  • Yoshikado, H., 1992: Numerical study of the daytime urban effect and its interaction with the sea-breeze. J. Appl. Meteor., 31, 11461164.

    • Search Google Scholar
    • Export Citation
  • Yoshikado, H., 1994: Interaction of the sea breeze and urban heat islands of different sizes and locations. J. Meteor. Soc. Japan, 72, 139142.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., , In H., , and Clements C. , 2007: Impact of turbulence, land surface, and radiation parameterizations on simulated boundary layer properties in a coastal environment, J. Geophys. Res., 112, D13110, doi:10.1029/2006JD008274.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 11
PDF Downloads 28 28 4

Integration of Lidar Data into a Coupled Mesoscale–Land Surface Model: A Theoretical Assessment of Sensitivity of Urban–Coastal Mesoscale Circulations to Urban Canopy Parameters

View More View Less
  • 1 Department of Geosciences, Mississippi State University, Mississippi State, Mississippi
  • | 2 Department of Geography, and Atmospheric Sciences Program, University of Georgia, Athens, Georgia
  • | 3 Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, Utah
© Get Permissions
Restricted access

Abstract

Urban–coastal circulations affect urban weather, dispersion and transport of pollutants and contaminants, and climate. Proper characterization and prediction of thermodynamic and dynamic processes in such environments are warranted. A new generation of observation and modeling systems is enabling unprecedented characterization of the three-dimensionality of the urban environment, including morphological parameters. Urban areas of Houston, Texas, are classified according to lidar-measured building heights and assigned typical urban land surface parameters appropriate to each classification. The lidar data were degraded from 1 m to the model resolution (1 km) with the goal of evaluating the impact of degraded resolution urban canopy parameters (UCPs) and three-dimensionality on the coastal–urban mesoscale circulations in comparison to typical two-dimensional urban slab approaches. The study revealed complex interactions between the sea breeze and urban heat island and offers a novel diagnostic tool, the bulk Richardson shear number, for identifying shallow mesoscale circulation.

Using the Advanced Research Weather Research and Forecasting model (ARW-WRF) coupled to an atmosphere–land surface–urban canopy model, the authors simulated a theoretical sea-breeze day and confirmed that while coastal morphology can itself lead to complex sea-breeze front structures, including preferred areas of vertical motion, the urban environment can have an impact on the evolution of the sea-breeze mesoscale boundary. The inclusion of lidar-derived UCPs, even at degraded resolution, in the model’s land surface representation can lead to significant differences in patterns of skin surface temperature, convergence, and vertical motion, which have implications for many aspects of urban weather.

Corresponding author address: Dr. Marshall Shepherd, University of Georgia, Dept. of Geography, GG Building, Athens, GA 30602. E-mail: marshgeo@uga.edu

Abstract

Urban–coastal circulations affect urban weather, dispersion and transport of pollutants and contaminants, and climate. Proper characterization and prediction of thermodynamic and dynamic processes in such environments are warranted. A new generation of observation and modeling systems is enabling unprecedented characterization of the three-dimensionality of the urban environment, including morphological parameters. Urban areas of Houston, Texas, are classified according to lidar-measured building heights and assigned typical urban land surface parameters appropriate to each classification. The lidar data were degraded from 1 m to the model resolution (1 km) with the goal of evaluating the impact of degraded resolution urban canopy parameters (UCPs) and three-dimensionality on the coastal–urban mesoscale circulations in comparison to typical two-dimensional urban slab approaches. The study revealed complex interactions between the sea breeze and urban heat island and offers a novel diagnostic tool, the bulk Richardson shear number, for identifying shallow mesoscale circulation.

Using the Advanced Research Weather Research and Forecasting model (ARW-WRF) coupled to an atmosphere–land surface–urban canopy model, the authors simulated a theoretical sea-breeze day and confirmed that while coastal morphology can itself lead to complex sea-breeze front structures, including preferred areas of vertical motion, the urban environment can have an impact on the evolution of the sea-breeze mesoscale boundary. The inclusion of lidar-derived UCPs, even at degraded resolution, in the model’s land surface representation can lead to significant differences in patterns of skin surface temperature, convergence, and vertical motion, which have implications for many aspects of urban weather.

Corresponding author address: Dr. Marshall Shepherd, University of Georgia, Dept. of Geography, GG Building, Athens, GA 30602. E-mail: marshgeo@uga.edu
Save