• Alldredge, A. L., , and Gotschalk C. , 1988: In situ settling behavior of marine snow. Limnol. Oceanogr., 33, 339351.

  • Allen, T., 1997: Powder Sampling and Particle Size Measurement. Vol. 1, Particle Size Measurement, 5th ed. Chapman and Hall, 525 pp.

  • Aurin, D., , Dierssen H. M. , , Twardowski M. S. , , and Roesler C. S. , 2010: Optical complexity in Long Island Sound and implications for coastal ocean color remote sensing. J. Geophys. Res., 115, C07011, doi:10.1029/2009JC005837.

    • Search Google Scholar
    • Export Citation
  • Babin, M., , Morel A. , , Fournier-Sicre V. , , Fell F. , , and Stramski D. , 2003: Light scattering properties of marine particles in coastal and open ocean waters as related to particle mass concentration. Limnol. Oceanogr., 48, 843859.

    • Search Google Scholar
    • Export Citation
  • Bader, H., 1970: The hyperbolic distribution of particle sizes. J. Geophys. Res., 75, 28222830.

  • Bernard, P. C., , Van Grieken R. E. , , and Eisma D. , 1986: Classification of estuarine particles using automated electron microprobe analysis and multivariate techniques. Environ. Sci. Technol., 20, 467473.

    • Search Google Scholar
    • Export Citation
  • Bishop, J. K. B., , and Biscaye P. E. , 1982: Chemical characterization of individual particles from the nepheloid layer in the Atlantic Ocean. Earth Planet. Sci. Lett., 58, 265275.

    • Search Google Scholar
    • Export Citation
  • Boss, E., and Coauthors, 2009: Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters. Limnol. Oceanogr. Methods, 7, 803810.

    • Search Google Scholar
    • Export Citation
  • Buonassissi, C., , and Dierssen H. M. , 2010: A regional comparison of particle size distributions and the power-law approximation in oceanic and estuarine surface waters. J. Geophys. Res., 115, C10028, doi:10.1029/2010JC006256.

    • Search Google Scholar
    • Export Citation
  • Chisholm, S. W., 1992: Phytoplankton size. Primary Productivity and Biogeochemical Cycles in the Sea, P. G. Falkowski and A. D. Woodhead, Eds., Plenum Press, 213–237.

  • Claustre, H., , Sciandra A. , , and Vaulot D. , 2008: Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: The BIOSOPE program. Biogeochemistry, 5, 679691.

    • Search Google Scholar
    • Export Citation
  • Danilatos, G.D., 1988: Foundations of Environmental Scanning Electron Microscopy. Vol. 71, Advances in Electronics and Electron Physics, Academic Press, 377 pp.

  • De Boer, D. H., , and Crosby G. , 1995: Evaluating the potential of SEM/EDS analysis for fingerprinting suspended sediment derived from two contrasting topsoils. Catena, 24, 243258.

    • Search Google Scholar
    • Export Citation
  • Doucet, F. J., , Maguire L. , , and Lead J. R. , 2004: Size fractionation of aquatic colloids and particles by cross-flow filtration: Analysis by scanning electron and atomic force microscopy. Anal. Chim. Acta, 522, 5971.

    • Search Google Scholar
    • Export Citation
  • Doucet, F. J., , Lead J. R. , , Maguire L. , , Achterberg E. P. , , and Millward G. E. , 2005: Visualisation of natural aquatic colloids and particles—A comparison of conventional high vacuum and environmental scanning electron microscopy. J. Environ. Monit., 7, 115121.

    • Search Google Scholar
    • Export Citation
  • Gardner, W. D., and Coauthors, 2001: Optics, particles, stratification and storms on the New England continental shelf. J. Geophys. Res., 106, 94739497.

    • Search Google Scholar
    • Export Citation
  • Harris, J. E., 1977: Characterization of suspended matter in the Gulf of Mexico. II: Particle size distribution of suspended matter from deep water. Deep-Sea Res., 58, 33223327.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. R., 1980: Prediction of oceanic particle size distributions from coagulation and sedimentation mechanisms. Particulates in Water, M. C. Kavanaugh and J. O. Leckie, Eds., Advances in Chemistry Series, Vol. 189, American Chemical Society, 243–257.

  • Jackson, G. A., , Maffione R. , , Costello D. K. , , Alldredge A. L. , , Logan B. E. , , and Dam H. G. , 1997: Particle size spectra between 1μm and 1cm at Monterey Bay determined using multiple instruments. Deep-Sea Res., 44, 17391767.

    • Search Google Scholar
    • Export Citation
  • Jonasz, M., 1987: Nonsphericity of suspended marine particles and its influence on light scattering. Limnol. Oceanogr., 32, 10591065.

    • Search Google Scholar
    • Export Citation
  • Jonasz, M., , and Fournier G. , 2007: Light Scattering by Particles in Water: Theoretical and Experimental Foundations. Academic Press, 714 pp.

  • Junge, C., 1963: Air Chemistry and Radioactivity. Academic Press, 382 pp.

  • Kahn, H., , Mano E. S. , , and Tassinari M. M. M. L. , 2002: Image analysis coupled with SEM-EDS applied to the characterization of a partially weathered An-Pb ore. J. Miner. Mater. Charact. Eng., 1, 19.

    • Search Google Scholar
    • Export Citation
  • Kim, J. P., , Lemmon J. , , and Hunter A. K. , 1995: Size-distribution analysis of sub-micron colloidal particles in river water. Environ. Technol., 16, 861868.

    • Search Google Scholar
    • Export Citation
  • Kitchen, J. C., 1977: Particle size distributions and the vertical distribution of suspended matter in the upwelling region off Oregon. Ph.D. thesis, Oregon State University, 130 pp.

  • Kostadinov, T. S., , Siegel D. A. , , and Maritorena S. , 2009: Retrieval of the particle size distribution from satellite ocean color observations. J. Geophys. Res., 114, C09015, doi:10/1029/2009JC005303.

    • Search Google Scholar
    • Export Citation
  • Kutchko, B. G., , and Kim A. G. , 2006: Fly ash characterization by SEM-EDS. Fuel, 85 (17–18), 25372544.

  • Lambert, C. E., , Jehanno C. , , Silverberg N. , , Brun-Cottan J. C. , , and Chesselet R. , 1981: Log-normal distributions of suspended particles in the open ocean. J. Mar. Res., 39, 7798.

    • Search Google Scholar
    • Export Citation
  • Lavoie, D. M., 1992: Computerized oceanic particle characterization using heavy metal staining, SEM, EDXS and image analysis. Deep-Sea Res., 39, 16551668.

    • Search Google Scholar
    • Export Citation
  • Longhurst, A. R., and Coauthors, 1992: Sub-micron particles in northwest Atlantic shelf waters. Deep-Sea Res., 39, 17.

  • Mobley, C. D., and Coauthors, 1993: Comparison of numerical models for computing underwater light fields. Appl. Opt., 32, 74847504.

  • Morel, A., , and Gentili B. , 1993: Diffuse reflectance of oceanic waters: II Bidirectional aspects. Appl. Opt., 32, 68646879.

  • Morel, A., , Voss K. J. , , and Gentili B. , 1995: Bidirectional reflectance of oceanic waters: A comparison of modeled and measured upward radiance fields. J. Geophys. Res., 100 (C7), 13 14313 150.

    • Search Google Scholar
    • Export Citation
  • Myers, R. H., 1990: Classical and Modern Regression with Applications. Duxbury Press, 488 pp.

  • Neter, J., , Wasserman W. , , and Kutner M. H. , 1989: Applied Linear Regression Models. McGraw-Hill/Irwin, 720 pp.

  • Peng, F., , Johnson D. L. , , and Effler S. W. , 2002: Suspensoids in New York City’s drinking water reservoirs: Turbidity apportionment. J. Amer. Water Resour. Assoc., 38, 14531465.

    • Search Google Scholar
    • Export Citation
  • Peng, F., , Effler S. W. , , O’Donnell D. , , Perkins M. G. , , and Weidemann A. , 2007: Role of minerogenic particles in light scattering in lakes and a river in central New York. Appl. Opt., 46, 65776594.

    • Search Google Scholar
    • Export Citation
  • Pfitsch, D. W., , Malkiel E. , , Ronzhes Y. , , King S. , , Sheng J. , , and Katz J. , 2005: Development of a free-drifting submersible digital holographic imaging system. Oceans 2005, Proc. MTS/IEEE, Marine Technology Society and IEEE, Washington, DC, 690–696, doi:10.1109/OCEANS.2005.1639833.

  • Pfitsch, D. W., , Malkiel E. , , Takagi M. , , Ronzhes Y. , , King S. , , Sheng J. , , and Katz J. , 2007: Analysis of in-situ microscopic organism behavior in data acquired using a free-drifting submersible holographic imaging system. Oceans 2007, Proc. MTS/IEEE, Marine Technology Society and IEEE, Vancouver, BC, Canada, 1–8, doi:10.1109/OCEANS.2007.4449197.

  • Pilskaln, C. H., , Lehmann C. , , Paduan J. B. , , and Silver M. W. , 1998: Spatial and temporal dynamics in marine aggregate abundance, sinking rate and flux: Monterey Bay, central California. Deep-Sea Res., 45, 18031837.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. A., , Stramski D. , , Wright V. M. , , and Wozniak S. B. , 2010: Measurements and characterization of particle size distributions in coastal waters. J. Geophys. Res., 115, C08024, doi:10.1029/2009JC005930.

    • Search Google Scholar
    • Export Citation
  • Santschi, P. H., , Balnois E. , , Wilkinson K. J. , , Zhang J. , , and Buffle J. , 1998: Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy. Limnol. Oceanogr., 45, 896908.

    • Search Google Scholar
    • Export Citation
  • Sezgin, M., , and Sankur B. , 2004: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging, 13, 146165.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., , Malkiel E. , , and Katz J. , 2006: Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl. Opt., 45, 38933901.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., , Malkiel E. , , Katz J. , , Adolf J. , , Belas R. , , and Place A. , 2007: Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates. Proc. Natl. Acad. Sci. USA, 104, 17 51217 517.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., , Malkiel E. , , and Katz J. , 2008: Using digital holographic microscopy for simultaneous measurements of 3-dimensional near wall velocity and wall shear stress in a turbulent boundary layer. Exp. Fluids, 45, 10231035.

    • Search Google Scholar
    • Export Citation
  • Sosik, H. M., , and Olson R. J. , 2007: Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol. Oceanogr. Methods, 5, 204216.

    • Search Google Scholar
    • Export Citation
  • Sournia, A., 1978: Phytoplankton Manual: Monographs on Oceanographic Methodology 6. Unesco, 337 pp.

  • Stramski, D., , and Kiefer D. A. , 1991: Light scattering by microorganisms in the open ocean. Prog. Oceanogr., 28, 343383.

  • Stramski, D., , Boss E. , , Bogucki D. , , and Voss K. , 2004: The role of seawater constituents in light backscattering in the ocean. Prog. Oceanogr., 61, 2756.

    • Search Google Scholar
    • Export Citation
  • Syvitski, J. P. M., 1991: Principles, Methods, and Application of Particle Size Analysis. Cambridge University Press, 388 pp.

  • Twardowski, M. S., , Sullivan J. M. , , Donaghay P. L. , , and Zaneveld J. R. V. , 1999: Microscale quantification of the absorption by dissolved and particulate material in coastal water with an ac-9. J. Atmos. Oceanic Technol., 16, 691707.

    • Search Google Scholar
    • Export Citation
  • Twardowski, M. S., , Boss E. , , Macdonald J. B. , , Pegau W. S. , , Barnard A. H. , , and Zaneveld J. R. V. , 2001: A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. J. Geophys. Res., 106 (C7), 14 12914 142.

    • Search Google Scholar
    • Export Citation
  • Twardowski, M. S., , Lewis M. , , Barnard A. , , and Zaneveld J. R. V. , 2005: Water instrumentation and platforms for ocean color remote sensing applications. Remote Sensing of Coastal Aquatic Waters, R. Miller and C. Del-Castillo, Eds., Springer-Kluwer, 69–100.

  • Twardowski, M. S., , Claustre H. , , Freeman S. A. , , Stramski D. , , and Huot Y. , 2007: Optical backscattering properties of the “clearest” natural waters. Biogeoscience, 4, 10411058.

    • Search Google Scholar
    • Export Citation
  • Twardowski, M. S., and Coauthors, 2012: The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations. J. Geophys. Res., 117, C00H17, doi:10.1029/2011JC007347.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, R. D., , and Balch W. M. , 2000: Size distribution of marine submicron particles determined by flow field-flow fractionation. Limnol. Oceanogr., 45, 485492.

    • Search Google Scholar
    • Export Citation
  • Wells, M. L., , and Goldberg E. D. , 1992: Marine submicron particles. Mar. Chem., 40, 518.

  • Wells, M. L., , and Goldberg E. D. , 1994: The distribution of colloids in the North Atlantic and Southern Oceans. Limnol. Oceanogr., 39, 286302.

    • Search Google Scholar
    • Export Citation
  • Wilkinson, K. J., , Balnois E. , , Leppard G. G. , , and Buffle J. , 1999: Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy. Colloids Surf., 155, 287310.

    • Search Google Scholar
    • Export Citation
  • Zaneveld, J. R. V., , Twardowski M. S. , , Lewis M. , , and Barnard A. , 2005: Radiative transfer and remote sensing. Remote Sensing of Coastal Aquatic Waters, R. Miller and C. Del-Castillo, Eds., Springer-Kluwer, 1–20.

  • Zhang, X., , Twardowski M. S. , , and Lewis M. , 2011: Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function. Appl. Opt., 50, 12401259.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 248 248 38
PDF Downloads 205 205 39

Determining Size Distributions and Composition of Particles Suspended in Water: A New SEM–EDS Protocol with Validation and Comparison to Other Methods

View More View Less
  • 1 Department of Research, WET Labs, Inc., Narragansett, Rhode Island
  • | 2 Department of Marine Science, University of Connecticut, Groton, Connecticut
  • | 3 Laboratoire d’Océanographie de Villefranche, Villefranche-sur-Mer, France
  • | 4 Department of Research, WET Labs, Inc., Narragansett, Rhode Island
© Get Permissions
Restricted access

Abstract

Knowledge of particle size distributions (PSDs) in seawater is important for understanding several facets of marine science, such as the behavior of light scattering in seawater, phytoplankton dynamics, and biogeochemical cycling. Here, a method has been developed to quantify the size distribution of particle suspensions and characterize their chemical composition utilizing a scanning electron microscope (SEM) coupled with an energy dispersive spectrometer (EDS) and applying image analysis techniques, including automatic thresholding. The method was validated by verifying the PSD and chemical composition of the Arizona Test Dust (ATD), which has a well-documented size distribution and chemical composition. Size distributions of ATD particles containing specific elements important in the marine environment, such as silicon, iron, calcium, aluminum, and potassium, were quantified. PSDs determined with the technique in field samples from coastal Long Island Sound and the remote South Pacific were compared with other sizing methods, including electroresistivity and laser diffractometry. Most accurate results for PSD determinations occurred when the particle mass loading on the filter was between 0.04 and 0.1 mg cm−2. With this in mind, immediate feedback in the field can be provided to prepare appropriate filtration sample volumes due to a linear relationship between the beam attenuation coefficient at 650 nm (c650) and the total suspended matter (TSM). Overall, the method presents two defining advantages in 1) minimizing user bias, because the majority of the analysis is automated, and 2) providing an elemental distribution in the context of a particle size distribution.

Corresponding author address: Heather Groundwater, 70 Dean Knauss Drive, WET Labs, Inc., Narragansett, RI 02882. E-mail: heather@wetlabs.com

Abstract

Knowledge of particle size distributions (PSDs) in seawater is important for understanding several facets of marine science, such as the behavior of light scattering in seawater, phytoplankton dynamics, and biogeochemical cycling. Here, a method has been developed to quantify the size distribution of particle suspensions and characterize their chemical composition utilizing a scanning electron microscope (SEM) coupled with an energy dispersive spectrometer (EDS) and applying image analysis techniques, including automatic thresholding. The method was validated by verifying the PSD and chemical composition of the Arizona Test Dust (ATD), which has a well-documented size distribution and chemical composition. Size distributions of ATD particles containing specific elements important in the marine environment, such as silicon, iron, calcium, aluminum, and potassium, were quantified. PSDs determined with the technique in field samples from coastal Long Island Sound and the remote South Pacific were compared with other sizing methods, including electroresistivity and laser diffractometry. Most accurate results for PSD determinations occurred when the particle mass loading on the filter was between 0.04 and 0.1 mg cm−2. With this in mind, immediate feedback in the field can be provided to prepare appropriate filtration sample volumes due to a linear relationship between the beam attenuation coefficient at 650 nm (c650) and the total suspended matter (TSM). Overall, the method presents two defining advantages in 1) minimizing user bias, because the majority of the analysis is automated, and 2) providing an elemental distribution in the context of a particle size distribution.

Corresponding author address: Heather Groundwater, 70 Dean Knauss Drive, WET Labs, Inc., Narragansett, RI 02882. E-mail: heather@wetlabs.com
Save