• AGU, 2004: NSCAT and QuikSCAT: Scientific Applications. American Geophysical Union, 650 pp.

  • Ahmad, K. A., , Linwood Jones W. , , Kasparis T. , , Vergara S. , , Adams I. , , and Park J. , 2005: Oceanic rain rate estimates from the QuikSCAT Radiometer: A Global Precipitation Mission pathfinder. J. Geophys. Res., 110, D11101, doi:10.1029/2004JD005560.

    • Search Google Scholar
    • Export Citation
  • Ahmad, K. A., , Jones W. L. , , and Kasparis T. , 2006: QuikSCAT Radiometer (Qrad) Rainrates Level 2B Data Product. Proc. Int. Geoscience and Remote Sensing Symp., Denver, CO, IEEE, doi:10.1109/IGARSS.2006.1058.

  • Allen, J. R., , and Long D. G. , 2005: An analysis of SeaWinds-based rain retrieval in severe weather events. IEEE Trans. Geosci. Remote Sens., 43, 28702878.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440.

  • Attema, E., 1991: The Active Microwave Instrument on-board the ERS-1 satellite. Proc. IEEE, 79, 791799.

  • Bliven, L. F., , Sobieski P. W. , , and Craeye C. , 1997: Rain generated ring-waves: Measurements and modeling for remote sensing. Int. J. Remote Sens., 18, 221228.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., and Coauthors, 2010: Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. Proceedings of the OceanObs’09: Sustained Ocean Observations and Information for Society Conference (Vol. 2), J. Hall, D. E. Harrison, and D. Stammer, Eds., ESA Publication WPP-306., doi:10.5270/OceanObs09.cwp.08.

  • Chang, P., , and Jelenak Z. , Eds., 2008: NOAA operational satellite ocean surface vector winds—QuikSCAT follow-on mission: User impact study report. NOAA/NESDIS, 91 pp. [Available online at http://manati.orbit.nesdis.noaa.gov/SVW_nextgen/QFO_user_impact_study_final.pdf.]

  • Contreras, R. F., , Plant W. J. , , Keller W. C. , , Hayes K. , , and Nystuen J. , 2003: Effects of rain on Ku-band backscatter from the ocean. J. Geophys. Res., 108, 3165, doi:10.1029/2001JC001255.

    • Search Google Scholar
    • Export Citation
  • Draper, D. W., , and Long D. G. , 2004a: Evaluating the effect of rain on SeaWinds scatterometer measurements. J. Geophys. Res., 109, C02005, doi:10.1029/2002JC001741.

    • Search Google Scholar
    • Export Citation
  • Draper, D. W., , and Long D. G. , 2004b: Simultaneous wind and rain retrieval using SeaWinds data. IEEE Trans. Geosci. Remote Sens., 42, 14111423.

    • Search Google Scholar
    • Export Citation
  • Figa, J., , and Stoffelen A. , 2000: On the assimilation of Ku-band scatterometer winds for weather analysis and forecasting. IEEE Trans. Geosci. Remote Sens., 38, 18931902.

    • Search Google Scholar
    • Export Citation
  • Figa-Saldana, J., and Coauthors, 2002: The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform. Can. J. Remote Sens., 26, 404412.

    • Search Google Scholar
    • Export Citation
  • Gaston, R., , and Rodriguez E. , 2008: QuikSCAT follow-on concept study. Jet Propulsion Laboratory Publication 08-18, 66 pp. [Available online at http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/40793/1/08-18.pdf.]

  • Hilburn, K. A., , Wentz F. J. , , Smith D. K. , , and Ashcroft P. D. , 2006: Correcting active scatterometer data for the effects of rain using passive microwave data. J. Appl. Meteor. Climatol., 45, 382398.

    • Search Google Scholar
    • Export Citation
  • Hristova-Veleva, S. M., and Coauthors, 2006: Revealing the SeaWinds ocean vector winds under the rain using AMSR. Part I: The physical approach. Preprints, 14th Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., JP1.8. [Available online at http://ams.confex.com/ams/Annual2006/techprogram/paper_104160.htm.]

  • Huddleston, J. N., , and Stiles B. W. , 2000a: Correcting active scatterometer data for the effects of rain using passive microwave data. JPL Product Description version 2.1, 8 pp.

  • Huddleston, J. N., , and Stiles B. W. , 2000b: A multi-dimensional histogram rain flagging technique for SeaWinds on QuikSCAT. Proc. Int. Geoscience and Remote Sensing Symp. IGARSS 2000, Vol. 3, Honolulu, HI, IEEE, 1232–1234.

  • Laupattarakasem, P., , Jones W. L. , , Hennon C. C. , , Allard J. R. , , Harless A. R. , , and Black P. , 2010: Improved hurricane ocean vector winds using SeaWinds active/passive retrievals. IEEE Trans. Geosci. Remote Sens., 48, 29092923.

    • Search Google Scholar
    • Export Citation
  • Le Mehaute, B. L., , and Khangaonkar T. , 1990: Dynamic interaction of intense rain with water waves. J. Phys. Oceanogr., 20, 18051812.

  • Liu, W. T., , Xie X. , , and Tang W. , 2010: Scatteometer’s unique capability in measuring ocean surface stress. Oceanography from Space, V. Barale, J. F. R. Gower, and L. Alberotanza, Eds., Springer Science, 93–111.

  • Long, D. G., , Milliff R. , , and Rodriguez E. , 2009: The TropSat mission: An observatory for mesoscale convective system processes in the global tropics. Proc. 2009 IEEE Radar Conf., Pasadena, CA, IEEE, doi:10.1109/RADAR.2009.4977098.

  • Lungu, T., 2006: SeaWinds science data product user’s manual, version 2.0. Jet Propulsion Laboratory, California Institute of Technology Doc. D-21551, 140 pp. [Available online at ftp://ftp.scp.byu.edu/data/seawinds/docs/SWS_SDPUG_V2.0.pdf.]

  • Mears, C. A., , Smith D. K. , , and Wentz F. J. , 1999: Development of a rain flag for QuikScat. Remote Sensing Systems Tech. Rep. 121999, 13 pp. [Available online at http://www.remss.com/papers/tech_reports/Development_of_Rain_Flag_QuikScat.pdf.]

  • Melsheimer, C., , Alpers W. , , and Gade M. , 2001: Simultaneous observations of rain cells over the ocean by the synthetic aperture radar aboard the ERS satellites and by surface-based weather radars. J. Geophys. Res., 106 (C3), 46654677.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., , Morzel J. , , Chelton D. B. , , and Freilich M. H. , 2004: Wind stress curl and wind stress divergence biases from rain effects on QSCAT surface wind retrievals. J. Atmos. Oceanic Technol., 21, 12161234.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2007: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. National Academy Press, 456 pp.

  • Nie, C., , and Long D. G. , 2007: A C-band wind/rain backscatter model. IEEE Trans. Geosci. Remote Sens., 45, 621631.

  • Nie, C., , and Long D. G. , 2008: A C-band scatterometer simultaneous wind/rain retrieval method. IEEE Trans. Geosci. Remote Sens., 46, 36183632.

    • Search Google Scholar
    • Export Citation
  • Nielsen, S., , and Long D. G. , 2009: A wind and rain backscatter model derived from AMSR and SeaWinds data. IEEE Trans. Geosci. Remote Sens., 47, 15951606.

    • Search Google Scholar
    • Export Citation
  • Owen, M. P., , and Long D. G. , 2010: Towards an improved wind and rain backscatter model for ASCAT. Proc. Int. Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 2531–2534.

  • Owen, M. P., , and Long D. G. , 2011a: Simultaneous wind and rain estimation for QuikSCAT at ultra-high resolution. IEEE Trans. Geosci. Remote Sens., 49, 18651878.

    • Search Google Scholar
    • Export Citation
  • Owen, M. P., , and Long D. G. , 2011b: M-ary Bayes estimation selection for QuikSCAT simultaneous wind and rain retrieval. IEEE Trans. Geosci. Remote Sens., 49, 44314444.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1986: A two-scale model of short, wind-generated waves and scatterometry. J. Geophys. Res., 90 (C9), 10 73510 749.

  • Portabella, M., , and Stoffelen A. , 2001: Rain detection and quality control of SeaWinds. J. Atmos. Oceanic Technol., 18, 11711183.

  • Portabella, M., , and Stoffelen A. , 2002: A comparison of KNMI quality control and JPL rain flag for SeaWinds. Can. J. Remote Sens., 28, 424430.

    • Search Google Scholar
    • Export Citation
  • Rodriguez, E., , Stiles B. W. , , Durden S. L. , , Dunbar R. S. , , Esteban-Fernandez D. , , Chang P. S. , , Jelenak Z. , , and Veleva S. , 2008: XOVWM: The Next-Generation Ocean Surface Vector Winds Mission. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 15B.7. [Available online at http://ams.confex.com/ams/28Hurricanes/techprogram/paper_138597.htm.]

  • Sienkiewicz, J., , Von Ahn J. , , and McFadden G. , 2006: The use of remotely sensed ocean surface at the NOAA Ocean Prediction Center. NOAA Operational Satellite SVW Winds Requirement Workshop, Miami, FL, NOAA/NESDIS/STAR. [Available online at http://manati.star.nesdis.noaa.gov/SVW_nextgen/OVW%20Workshop/OPC_Wind_Requirements_060506.ppt.]

  • Spencer, M. W., , Tsai W. , , and Long D. G. , 2003: High-resolution measurements with a spaceborne pencil-beam scatterometer using combined range/Doppler discrimination techniques. IEEE Trans. Geosci. Remote Sens., 41, 567581.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , and Kummerow C. D. , 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765.

    • Search Google Scholar
    • Export Citation
  • Stiles, B. W., , and Yueh S. H. , 2002: Impact of rain on spaceborne Ku-band wind scatterometer data. IEEE Trans. Geosci. Remote Sens., 40, 19731983.

    • Search Google Scholar
    • Export Citation
  • Stiles, B. W., , and S. Dunbar R. , 2010: A neural network technique for improving the accuracy of scatterometer winds in rainy conditions. IEEE Trans. Geosci. Remote Sens., 48, 31143122.

    • Search Google Scholar
    • Export Citation
  • Stiles, B. W., and Coauthors, 2006: Revealing the SeaWinds ocean vector winds under the rain using AMSR. Part II: The empirical approach. Preprints, 14th Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., JP1.7. [Available online at http://ams.confex.com/ams/Annual2006/techprogram/paper_104162.htm.]

  • Stiles, B. W., and Coauthors, 2010: Obtaining accurate ocean surface winds in hurricane conditions: A dual-frequency scatterometry approach. IEEE Trans. Geosci. Remote Sens., 48, 31013113.

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., , and Anderson D. , 1997: Scatterometer data interpretation: Measurement space and inversion. J. Atmos. Oceanic Technol., 14, 12981313.

    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., , Fung A. K. , , and Moore R. K. , 1986: Microwave Remote Sensing: Active and Passive. Vol. III, Artech House, 1120 pp.

  • Weissman, D. E., , and Bourassa M. A. , 2008: Measurements of the effect of rain-induced sea surface roughness on the QuikSCAT scatterometer radar cross section. IEEE Trans. Geosci. Remote Sens., 46, 28822894.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., , and Bourassa M. A. , 2011: The effect of rain on ASCAT observations of the sea surface radar cross section using simultaneous 3-D NEXRAD rain measurements. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Vancouver, BC, Canada, IEEE, 1171–1174.

  • Wentz, F. J., , Cardone V. J. , , and Fedor L. S. , 1982: Intercomparison of wind speeds inferred by the SASS altimeter and SMMR. J. Geophys. Res., 87 (C5), 33783384.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 107 107 18
PDF Downloads 71 71 11

Challenges to Satellite Sensors of Ocean Winds: Addressing Precipitation Effects

View More View Less
  • 1 Hofstra University, Hempstead, New York
  • | 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 3 Center for Remote Sensing, Brigham Young University, Provo, Utah
  • | 4 Remote Sensing Systems, Santa Rosa, California
  • | 5 University of Central Florida, Orlando, Florida
© Get Permissions
Restricted access

Abstract

Measurements of global ocean surface winds made by orbiting satellite radars have provided valuable information to the oceanographic and meteorological communities since the launch of the Seasat in 1978, by the National Aeronautics and Space Administration (NASA). When Quick Scatterometer (QuikSCAT) was launched in 1999, it ushered in a new era of dual-polarized, pencil-beam, higher-resolution scatterometers for measuring the global ocean surface winds from space. A constant limitation on the full utilization of scatterometer-derived winds is the presence of isolated rain events, which affect about 7% of the observations. The vector wind sensors, the Ku-band scatterometers [NASA’s SeaWinds on the QuikSCAT and Midori-II platforms and Indian Space Research Organisation’s (ISRO’s) Ocean Satellite (Oceansat)-2], and the current C-band scatterometer [Advanced Wind Scatterometer (ASCAT), on the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)’s Meteorological Operation (MetOp) platform] all experience rain interference, but with different characteristics. Over this past decade, broad-based research studies have sought to better understand the physics of the rain interference problem, to search for methods to bypass the problem (using rain detection, flagging, and avoidance of affected areas), and to develop techniques to improve the quality of the derived wind vectors that are adversely affected by rain. This paper reviews the state of the art in rain flagging and rain correction and describes many of these approaches, methodologies, and summarizes the results.

Corresponding author address: David E. Weissman, 201B Weed Hall, Department of Engineering, 133 Hofstra University, Hempstead, NY 11549. E-mail: eggdew@hofstra.edu

Abstract

Measurements of global ocean surface winds made by orbiting satellite radars have provided valuable information to the oceanographic and meteorological communities since the launch of the Seasat in 1978, by the National Aeronautics and Space Administration (NASA). When Quick Scatterometer (QuikSCAT) was launched in 1999, it ushered in a new era of dual-polarized, pencil-beam, higher-resolution scatterometers for measuring the global ocean surface winds from space. A constant limitation on the full utilization of scatterometer-derived winds is the presence of isolated rain events, which affect about 7% of the observations. The vector wind sensors, the Ku-band scatterometers [NASA’s SeaWinds on the QuikSCAT and Midori-II platforms and Indian Space Research Organisation’s (ISRO’s) Ocean Satellite (Oceansat)-2], and the current C-band scatterometer [Advanced Wind Scatterometer (ASCAT), on the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)’s Meteorological Operation (MetOp) platform] all experience rain interference, but with different characteristics. Over this past decade, broad-based research studies have sought to better understand the physics of the rain interference problem, to search for methods to bypass the problem (using rain detection, flagging, and avoidance of affected areas), and to develop techniques to improve the quality of the derived wind vectors that are adversely affected by rain. This paper reviews the state of the art in rain flagging and rain correction and describes many of these approaches, methodologies, and summarizes the results.

Corresponding author address: David E. Weissman, 201B Weed Hall, Department of Engineering, 133 Hofstra University, Hempstead, NY 11549. E-mail: eggdew@hofstra.edu
Save