• Aumann, H. H., , and Pagano T. S. , 2008: Using AIRS and IASI data to evaluate absolute radiometric accuracy and stability for climate applications. Atmospheric and Environmental Remote Sensing Data Processing and Utilization IV: Readiness for GEOSS II, M. D. Goldberg et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7085), 8504–8504.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., , Broberg S. , , Elliott D. , , Gaiser S. , , and Gregorich D. , 2006: Three years of Atmospheric Infrared Sounder radiometric calibration validation using sea surface temperatures. J. Geophys. Res., 111, D16S90, doi:10.1029/2005JD006822.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926.

    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., , Yanuk D. J. , , Lee H.-T. , , and Gruber A. , 1989: A technique for estimating outgoing longwave radiation from HIRS radiance observations. J. Atmos. Oceanic Technol., 6, 706711.

    • Search Google Scholar
    • Export Citation
  • Gaiser, S. L., , Aumann H. H. , , Strow L. L. , , Hannon S. E. , , and Weiler M. , 2003: In-flight spectral calibration of the atmospheric infrared sounder. IEEE Trans. Geosci. Remote Sens., 41, 287297.

    • Search Google Scholar
    • Export Citation
  • Huang, X. L., , and Yung Y. L. , 2005: Spatial and spectral variability of the outgoing thermal IR spectra from AIRS: A case study of July 2003. J. Geophys. Res., 110, D12102, doi:10.1029/2004JD005530.

    • Search Google Scholar
    • Export Citation
  • Huang, X. L., , Yang W. Z. , , Loeb N. G. , , and Ramaswamy V. , 2008: Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: Clear sky over the tropical oceans. J. Geophys. Res., 113, D09110, doi:10.1029/2007JD009219.

    • Search Google Scholar
    • Export Citation
  • Huang, X. L., , Loeb N. G. , , and Yang W. Z. , 2010: Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: 2. Cloudy sky and band-by-band cloud radiative forcing over the tropical oceans over the tropical oceans. J. Geophys. Res., 115, D21101, doi:10.1029/2010JD013932.

    • Search Google Scholar
    • Export Citation
  • Lee, H.-T., , Heidinger A. , , Gruber A. , , and Ellingson R. G. , 2004: The HIRS outgoing longwave radiation product from hybrid polar and geosynchronous satellite observations. Adv. Space Res., 33, 11201124.

    • Search Google Scholar
    • Export Citation
  • Lee, H.-T., , Gruber A. , , Ellingson R. G. , , and Laszlo I. , 2007: Development of the HIRS Outgoing Longwave Radiation Climate Dataset. J. Atmos. Oceanic Technol., 24, 20292047.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , Hinton P. O. , , and Green R. N. , 1999: Top-of-atmosphere albedo estimation from angular distribution models: A comparison between two approaches. J. Geophys. Res., 104, 31 25531 260.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , Priestley K. J. , , Kratz D. P. , , Geier E. B. , , Green R. N. , , Wielicki V. A. , , Hinton R. O. , , and Nolan S. K. , 2001: Determination of unfiltered radiances from the clouds and the Earth’s Radiant Energy System instrument. J. Appl. Meteor., 40, 822835.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , Kato S. , , Loukachine K. , , and Manalo-Smith N. , 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , Wielicki B. A. , , Rose F. G. , , and Doelling D. R. , 2007: Variability in global top-of-atmosphere shortwave radiation between 2000 and 2005. Geophys. Res. Lett., 34, L03704, doi:10.1029/2006GL028196.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , Wielicki B. A. , , Wong T. , , and Parker P. A. , 2009: Impact of data gaps on satellite broadband radiation records. J. Geophys. Res., 114, D11109, doi:10.1029/2008JD011183.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , Kato S. , , Su W. , , Wong T. , , Rose F. , , Doelling D. R. , , and Norris J. , 2012: Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surv. Geophys., in press.

    • Search Google Scholar
    • Export Citation
  • Ohring, G., , Wielicki B. , , Spencer R. , , Emery B. , , and Datla R. , 2005: Satellite instrument calibration for measuring global climate change. Bull. Amer. Meteor. Soc., 86, 13031313.

    • Search Google Scholar
    • Export Citation
  • Pagano, T. S., , Aumann H. H. , , Hagan D. E. , , and Overoye K. , 2003: Prelaunch and in-flight radiometric calibration of the Atmospheric Infrared Sounder (AIRS). IEEE Trans. Geosci. Remote Sens., 41, 265273.

    • Search Google Scholar
    • Export Citation
  • Priestley, K. J., and Coauthors, 2011: Radiometric performance of the CERES Earth Radiation Budget climate record sensors on the EOS Aqua and Terra spacecraft through April 2007. J. Atmos. Oceanic Technol., 28, 321.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , Barkstrom B. R. , , Harrison E. F. , , Lee R. B. , , Smith G. L. , , and Cooper J. E. , 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868.

    • Search Google Scholar
    • Export Citation
  • Wong, T., , Wielicki B. A. , , Lee R. B. , , Smith G. L. , , Bush K. A. , , and Willis J. K. , 2006: Reexamination of the observed decadal variability of the earth radiation budget using altitude-corrected ERBE/ERBS nonscanner WFOV data. J. Climate, 19, 40284040.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 1
PDF Downloads 10 10 0

Assessing Stability of CERES-FM3 Daytime Longwave Unfiltered Radiance with AIRS Radiances

View More View Less
  • 1 Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan
  • | 2 Radiation and Climate Branch, NASA Langley Research Center, Hampton, Virginia
  • | 3 Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan
© Get Permissions
Restricted access

Abstract

Clouds and the Earth’s Radiant Energy System (CERES) daytime longwave (LW) radiances are determined from the difference between a total (TOT) channel (0.3–200 μm) measurement and a shortwave (SW) channel (0.3–5 μm) measurement, while nighttime LW radiances are obtained directly from the TOT channel. This means that a drift in the SW channel or the SW portion of the TOT channel could impact the daytime longwave radiances, but not the nighttime ones. This study evaluates daytime and nighttime CERES LW radiances for a possible secular drift in CERES LW observations using spectral radiances observed by Atmospheric Infrared Sounder (AIRS). By examining the coincidental AIRS and CERES Flight Model 3 (FM3) measurements over the tropical clear-sky oceans for all of January and July months since 2005, a secular drift of about −0.11% yr−1 in the daytime CERES-FM3 longwave unfiltered radiance can be identified in the CERES Single Scanner Footprint (SSF) Edition 2 product. This provides an upper-bound estimation for the drift in daytime outgoing longwave radiation, which is approximately −0.323 W m−2 yr−1. This estimation is consistent with the independent assessment concluded by the CERES calibration team. Such secular drift has been greatly reduced in the latest CERES SSF Edition 3 product. Comparisons are conducted for the CERES window channel as well, and it shows essentially no drift. This study serves as a practical example illustrating how the measurements of spectrally resolved radiances can be used to help evaluate data products from other narrowband or broadband measurements.

Corresponding author address: Dr. Xianglei Huang, 2455 Hayward Street, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109-2143. E-mail: xianglei@umich.edu

Abstract

Clouds and the Earth’s Radiant Energy System (CERES) daytime longwave (LW) radiances are determined from the difference between a total (TOT) channel (0.3–200 μm) measurement and a shortwave (SW) channel (0.3–5 μm) measurement, while nighttime LW radiances are obtained directly from the TOT channel. This means that a drift in the SW channel or the SW portion of the TOT channel could impact the daytime longwave radiances, but not the nighttime ones. This study evaluates daytime and nighttime CERES LW radiances for a possible secular drift in CERES LW observations using spectral radiances observed by Atmospheric Infrared Sounder (AIRS). By examining the coincidental AIRS and CERES Flight Model 3 (FM3) measurements over the tropical clear-sky oceans for all of January and July months since 2005, a secular drift of about −0.11% yr−1 in the daytime CERES-FM3 longwave unfiltered radiance can be identified in the CERES Single Scanner Footprint (SSF) Edition 2 product. This provides an upper-bound estimation for the drift in daytime outgoing longwave radiation, which is approximately −0.323 W m−2 yr−1. This estimation is consistent with the independent assessment concluded by the CERES calibration team. Such secular drift has been greatly reduced in the latest CERES SSF Edition 3 product. Comparisons are conducted for the CERES window channel as well, and it shows essentially no drift. This study serves as a practical example illustrating how the measurements of spectrally resolved radiances can be used to help evaluate data products from other narrowband or broadband measurements.

Corresponding author address: Dr. Xianglei Huang, 2455 Hayward Street, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109-2143. E-mail: xianglei@umich.edu
Save