• Ackerman, T. P., , and Stokes G. M. , 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56, 3844.

  • Angevine, W. M., , and Mitchell K. , 2001: Evaluation of the NCEP Mesoscale Eta Model convective boundary layer for air quality applications. Mon. Wea. Rev., 129, 27612775.

    • Search Google Scholar
    • Export Citation
  • Barr, A. G., , and Betts A. K. , 1997: Radiosonde boundary layer budgets above a boreal forest. J. Geophys. Res., 102D, 29 20529 212.

  • Chandra, A. S., , Kollias P. , , Giangrande S. E. , , and Klein S. A. , 2010: Long-term observations of the convective boundary layer using insect radar returns at the SGP ARM Climate Research Facility. J. Climate, 23, 56995714.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., , and Angevine W. M. , 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteor., 39, 12331247.

    • Search Google Scholar
    • Export Citation
  • Cooper, D. I., , and Eichinger W. E. , 1994: Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations. J. Geophys. Res., 99D, 22 93722 948.

    • Search Google Scholar
    • Export Citation
  • Coulter, R., , and Holdridge D. , 1998: A procedure for the automatic estimation of mixed layer height. Proc. Eighth ARM Science Team Meeting, Tucson, AZ, Dept. of Energy Office of Energy Research, 177–180. [Available online at http://www.arm.gov/publications/proceedings/conf08/extended_abs/coulter_rl.pdf.]

  • Coulter, R., , Holdridge D. , , and Ritsche M. , 2009: Balloon-Borne Sounding System (BBSS) handbook. U.S. Department of Energy Rep. DOE/SC-ARM/TR-029, 29 pp.

  • Dong, X., and Coauthors, 2011: Investigation of the 2006 drought and 2007 flood extremes at the South Great Plains through an integrative analysis of observations. J. Geophys. Res., 116, D03204, doi:10.1029/2010JD014776.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., , Xu M. , , and Eberhard W. L. , 1992: Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data. J. Geophys. Res., 97 (D17), 18 40918 423.

    • Search Google Scholar
    • Export Citation
  • Garbrecht, J. D., , Schneider J. M. , , and Brown G. O. , 2007: Soil water signature of the 2005–2006 drought under tallgrass prairie at Fort Reno, Oklahoma. Proc. Oklahoma Acad. Sci., 87, 3744.

    • Search Google Scholar
    • Export Citation
  • Grimsdell, A. W., , and Angevine W. M. , 1998: Convective boundary layer height measurement with wind profilers and comparison to cloud base. J. Atmos. Oceanic Technol., 15, 13311338.

    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., , and Gamage N. , 1995: Moisture flux and mixing processes in the daytime continental convective boundary layer. J. Geophys. Res., 100D, 25 66525 674.

    • Search Google Scholar
    • Export Citation
  • Hennemuth, B., , and Lammert A. , 2006: Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Bound.-Layer Meteor., 120, 181200, doi:10.1007/s10546-005-9035-3.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., , and Boville B. A. , 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842.

    • Search Google Scholar
    • Export Citation
  • Holzworth, G. C., 1964: Estimates of mean maximum mixing depths in the contiguous United States. Mon. Wea. Rev., 92, 235242.

  • Janjić, Z. I., 1996: The Mellor–Yamada level 2.5 scheme in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 333–334.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Newsom, R. K., 2009: Raman Lidar (RL) handbook. U.S. Department of Energy Rep. DOE/SC-ARM/TR-038, 29 pp.

  • Seibert, P., , Beyrich F. , , Gryning S.-E. , , Joffre S. , , Rasmussen A. , , and Tercier P. , 2000: Review and intercomparison of operational methods for the determination of mixing height. Atmos. Environ., 34, 10011027, doi:10.1016/S1352-2310(99)00349-0.

    • Search Google Scholar
    • Export Citation
  • Seidel, D., , Ao C. , , and Li K. , 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, doi:10.1029/2009JD013680.

    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., , Pekour M. S. , , Coulter R. L. , , Martin T. J. , , and Walters J. T. , 2007: The daytime mixing layer observed by radiosonde, profiler, and lidar during MILAGRO. Atmos. Chem. Phys. Discuss., 7, 15 02515 065, doi:10.5194/acpd-7-15025-2007.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., , van de Wiel B. J. H. , , and Holtslag A. A. M. , 2007: Diagnostic equations for the stable boundary layer height: Evaluation and dimensional analysis. J. Appl. Meteor. Climatol., 46, 212225.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., , and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 12011221.

    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., , Senff C. J. , , Weickmann A. M. , , Brewer W. A. , , Banta R. M. , , Sandberg S. P. , , Law D. C. , , and Hardesty R. M. , 2009: Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J. Atmos. Oceanic Technol., 26, 673688.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., , and Mahrt L. , 2004: Evaluating formulations of stable boundary layer height. J. Appl. Meteor., 43, 17361749.

  • Welton, E., , and Campbell J. , 2002: Micropulse lidar signals: Uncertainty analysis. J. Atmos. Oceanic Technol., 19, 20892094.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 138 138 22
PDF Downloads 143 143 27

A Method for Estimating Planetary Boundary Layer Heights and Its Application over the ARM Southern Great Plains Site

View More View Less
  • 1 Purdue University, West Lafayette, Indiana
© Get Permissions
Restricted access

Abstract

A new objective method to determine the height of the planetary boundary layer (PBL) is presented here. PBL heights are computed using the statistical variance and kurtosis of dewpoint and virtual potential temperature differences measured from radio soundings at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) program at the Southern Great Plains (SGP) site. These heights are compared with those derived from lidar, also on the site, and with gridded model data from the North American Regional Reanalysis (NARR). A climatology of mean heights in the early (1800 UTC) and late (0000 UTC) afternoon from 2002 to 2010 is presented to show the effectiveness of the method. Future work using the new method include producing an observational climatology of PBL heights and understanding the aerosol loading within the PBL as well as a better understanding of the coupling between the surface and free atmosphere.

Corresponding author address: Dev Niyogi, Purdue University, 915 W. State St., West Lafayette, IN 47907. E-mail: climate@purdue.edu

Abstract

A new objective method to determine the height of the planetary boundary layer (PBL) is presented here. PBL heights are computed using the statistical variance and kurtosis of dewpoint and virtual potential temperature differences measured from radio soundings at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) program at the Southern Great Plains (SGP) site. These heights are compared with those derived from lidar, also on the site, and with gridded model data from the North American Regional Reanalysis (NARR). A climatology of mean heights in the early (1800 UTC) and late (0000 UTC) afternoon from 2002 to 2010 is presented to show the effectiveness of the method. Future work using the new method include producing an observational climatology of PBL heights and understanding the aerosol loading within the PBL as well as a better understanding of the coupling between the surface and free atmosphere.

Corresponding author address: Dev Niyogi, Purdue University, 915 W. State St., West Lafayette, IN 47907. E-mail: climate@purdue.edu
Save