An Automated Cirrus Cloud Detection Method for a Ground-Based Cloud Image

Jun Yang Institute of Atmospheric Sounding, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Jun Yang in
Current site
Google Scholar
PubMed
Close
,
Weitao Lu Institute of Atmospheric Sounding, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Weitao Lu in
Current site
Google Scholar
PubMed
Close
,
Ying Ma Institute of Atmospheric Sounding, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Ying Ma in
Current site
Google Scholar
PubMed
Close
, and
Wen Yao Institute of Atmospheric Sounding, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Wen Yao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cloud detection is a basic research for achieving cloud-cover state and other cloud characteristics. Because of the influence of sunlight, the brightness of sky background on the ground-based cloud image is usually nonuniform, which increases the difficulty for cirrus cloud detection, and few detection methods perform well for thin cirrus clouds. This paper presents an effective background estimation method to eliminate the influence of variable illumination conditions and proposes a background subtraction adaptive threshold method (BSAT) to detect cirrus clouds in visible images for the small field of view and mixed clear–cloud scenes. The BSAT algorithm consists of red-to-blue band operation, background subtraction, adaptive threshold selection, and binarization. The experimental results show that the BSAT algorithm is robust for all types of cirrus clouds, and the quantitative evaluation results demonstrate that the BSAT algorithm outperforms the fixed threshold (FT) and adaptive threshold (AT) methods in cirrus cloud detection.

Corresponding author address: Jun Yang, Institute of Atmospheric Sounding, Chinese Academy of Meteorological Sciences, No. 46 Zhongguancun South Street, Beijing 100081, China. E-mail: yangjun@cams.cma.gov.cn

Abstract

Cloud detection is a basic research for achieving cloud-cover state and other cloud characteristics. Because of the influence of sunlight, the brightness of sky background on the ground-based cloud image is usually nonuniform, which increases the difficulty for cirrus cloud detection, and few detection methods perform well for thin cirrus clouds. This paper presents an effective background estimation method to eliminate the influence of variable illumination conditions and proposes a background subtraction adaptive threshold method (BSAT) to detect cirrus clouds in visible images for the small field of view and mixed clear–cloud scenes. The BSAT algorithm consists of red-to-blue band operation, background subtraction, adaptive threshold selection, and binarization. The experimental results show that the BSAT algorithm is robust for all types of cirrus clouds, and the quantitative evaluation results demonstrate that the BSAT algorithm outperforms the fixed threshold (FT) and adaptive threshold (AT) methods in cirrus cloud detection.

Corresponding author address: Jun Yang, Institute of Atmospheric Sounding, Chinese Academy of Meteorological Sciences, No. 46 Zhongguancun South Street, Beijing 100081, China. E-mail: yangjun@cams.cma.gov.cn
Save
  • Calbó, J., and Sabburg J. , 2008: Feature extraction from whole-sky ground-based images for cloud-type recognition. J. Atmos. Oceanic Technol., 25, 314.

    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., Harrison R. G. , and Kirkby J. , 2002: Cosmic rays, clouds, and climate. Science, 298, 17321737.

  • Cazorla, A., Olmo J. , and Alados-Arboledas L. , 2008: Development of a sky imager for cloud cover assessment. J. Opt. Soc. Amer., 25A, 2939.

    • Search Google Scholar
    • Export Citation
  • Glantz, P., 2010: Satellite retrieved cloud optical thickness sensitive to surface wind speed in the subarctic marine boundary layer. Environ. Res. Lett., 5, 034002 doi:10.1088/1748-9326/5/3/034002.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, R. C., Woods R. E. , and Eddins S. L. , 2004: Digital Image Processing Using MATLAB. Pearson Prentice Hall, 609 pp.

  • Harshvardhan, D. A. Randall, Corsetti T. G. and Dazlich D. A. , 1989: Earth radiation budget and cloudiness simulations with a general circulation model. J. Atmos. Sci., 46, 19221942.

    • Search Google Scholar
    • Export Citation
  • Heinle, A., Macke A. , and Srivastav A. , 2010: Automatic cloud classification of whole sky images. Atmos. Meas. Tech., 3, 557567.

  • Huo, J., and Lu D. , 2009: Cloud determination of all-sky images under low-visibility conditions. J. Atmos. Oceanic Technol., 26, 21722181.

    • Search Google Scholar
    • Export Citation
  • Hutchison, K. D., Hardy K. R. , and Gao B. C. , 1995: Improved detection of optically thin cirrus clouds in nighttime multispectral meteorological satellite using total integrated water vapor information. J. Appl. Meteor., 34, 11611168.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. W., Koehler T. L. , and Shields J. E. , 1988: A multi-station set of whole sky imagers and a preliminary assessment of the emerging data base. Proc. Cloud Impacts on DOD Operations and Systems Workshop, Silver Spring, MD, Department of Defense, 159–162.

  • Johnson, R. W., Hering W. S. , and Shields J. E. , 1989: Automated visibility and cloud cover measurements with a solid-state imaging system. Scripps Institution of Oceanography Marine Physical Laboratory Final Rep. 89-7, 127 pp.

  • Jolivet, D., and Feijt A. J. , 2003: Cloud thermodynamic phase and particle size estimation using the 0.67 and 1.6 μm channels from meteorological satellites. Atmos. Chem. Phys. Discuss., 3, 44614488.

    • Search Google Scholar
    • Export Citation
  • Li, Q., Lu W. , and Yang J. , 2011: A hybrid thresholding algorithm for cloud detection on ground-based color images. J. Atmos. Oceanic Technol., 28, 12861296.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and DeLuisi J. J. , 1998: Development of an automated hemispheric sky imager for cloud fraction retrievals. Proc. 10th Symp. on Meteorological Observations and Instrumentation, Phoenix, AZ, Amer. Meteor. Soc., 171–174.

  • Long, C. N., Sabburg J. M. , Calbó J. , and Pagès D. , 2006: Retrieving cloud characteristics from ground-based daytime color all-sky images. J. Atmos. Oceanic Technol., 23, 633652.

    • Search Google Scholar
    • Export Citation
  • Nishita, T., Sirai T. , Tadamura K. , and Nakamae E. , 1993: Display of the earth taking into account atmospheric scattering. Proc. SIGGRAPH 93, Anaheim, CA, Association for Computing Machinery, 175–182.

  • Nordeen, M. L., Khaiyer M. M. , Doeling D. R. , and Phan D. , 2005: Comparison of surface and satellite-derived cloud and radiation properties at the atmospheric radiation measurement Southern Great Plains and tropical western Pacific. Proc. 15th ARM Science Team Meeting, Daytona, FL, NASA, 14 pp.

  • Otsu, N., 1979: A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern., 9, 6266.

  • Piccardi, M., 2004: Background subtraction techniques: A review. Proc. Int. Conf. on Systems, Man and Cybernetics, Hague, Netherlands, IEEE, Vol. 4, 3099–3104.

  • Seiz, G., Shields J. , Feister U. , Baltsavias E. P. , and Gruen A. , 2007: Cloud mapping with ground-based photogrammetric cameras. Int. J. Remote Sens., 28, 20012032.

    • Search Google Scholar
    • Export Citation
  • Shields, J. E., Johnson R. W. , and Karr M. E. , 1992: An automated observing system for passive evaluation of cloud cover and visibility. Scripps Institution of Oceanography Marine Physical Laboratory Rep. SIO 92-22, 39 pp.

  • Shields, J. E., Johnson R. W. , Karr M. E. , and Wertz J. L. , 1998: Automated day/night whole sky imagers for field assessment of cloud cover distribution and radiances distributions. Proc. 10th Symp. on Meteorological Observation and Instrumentation, Phoenix, AZ, Amer. Meteor. Soc., 165–170.

  • Shields, J. E., Karr M. E. , Burden A. R. , Johnson R. W. , and Hodgkiss W. S. , 2007a: Whole sky imaging of clouds in the visible and IR for starfire optical range. Scripps Institution of Oceanography Marine Physical Laboratory Tech. Note 272, 67 pp.

  • Shields, J. E., Karr M. E. , Burden A. R. , Johnson R. W. , and Hodgkiss W. S. , 2007b: Continuing support of cloud free line of sight determination, including whole sky imaging of clouds. Scripps Institution of Oceanography Marine Physical Laboratory Tech. Note 273, 60 pp.

  • Shufelt, J. A., 1999: Performance evaluation and analysis of monocular building extraction from aerial imagery. IEEE Trans. Pattern Anal. Mach. Intell., 21, 311326.

    • Search Google Scholar
    • Export Citation
  • Slater, D. W., Long C. N. , and Tooman T. P. , 2001: Total sky imager/whole sky imager cloud fraction comparison. Proc. 11th ARM Science Team Meeting, Atlanta, GA, NASA, 1–11.

  • Souza-Echer, M. P., Pereira E. B. , Bins L. S. , and Andrade M. A. R. , 2006: A simple method for the assessment of the cloud cover state in high-latitude regions by a ground-based digital camera. J. Atmos. Oceanic Technol., 23, 437447.

    • Search Google Scholar
    • Export Citation
  • Sylvio, L. M. N., Wangenheim A. V. , Pereira E. B. , and Comunello E. , 2010: The use of Euclidean geometric distance on RGB color space for the classification of sky and cloud patterns. J. Atmos. Oceanic Technol., 27, 15041517.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2008: Guide to meteorological instruments and methods of observation. 7th ed. WMO Note 8, 681 pp.

  • Yang, J., Lu W. , Ma Y. , Yao W. , and Li Q. , 2009: An automatic ground-based cloud detection method based on adaptive threshold (in Chinese). J.Appl. Meteor.Sci., 20, 713721.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Lu W. , Ma Y. , Yao W. , and Yang J. , 2010: Ground-based total-sky cloud imager (TCI) based on light-shelter scheme using rotating spherical-vanes (in Chinese). Chinese Utility Model Patent ZL200920277594.5, 9 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 681 252 15
PDF Downloads 570 165 5