Interpretation of Accurate UV Polarization Lidar Measurements: Application to Volcanic Ash Number Concentration Retrieval

A. Miffre LASIM Laboratory Lyon 1 University, and CNRS UMR 5579, Villeurbanne, France

Search for other papers by A. Miffre in
Current site
Google Scholar
PubMed
Close
,
G. David LASIM Laboratory Lyon 1 University, and CNRS UMR 5579, Villeurbanne, France

Search for other papers by G. David in
Current site
Google Scholar
PubMed
Close
,
B. Thomas LASIM Laboratory Lyon 1 University, and CNRS UMR 5579, Villeurbanne, France

Search for other papers by B. Thomas in
Current site
Google Scholar
PubMed
Close
,
M. Abou Chacra LASIM Laboratory Lyon 1 University, and CNRS UMR 5579, Villeurbanne, France

Search for other papers by M. Abou Chacra in
Current site
Google Scholar
PubMed
Close
, and
P. Rairoux LASIM Laboratory Lyon 1 University, and CNRS UMR 5579, Villeurbanne, France

Search for other papers by P. Rairoux in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, accurate UV polarization measurements are performed on a volcanic ash cloud after long-range transport at Lyon, France (45.76°N, 4.83°E). The volcanic particles are released from the mid-April 2010 eruption of the Eyjafjallajökull Icelandic volcano (63.63°N, 19.62°W). The aerosol UV depolarization, which arises from nonspherical volcanic ash particles, serves as an independent means to discriminate ash from nonash particles in the volcanic cloud. This discrimination is only feasible if the intrinsic ash particle depolarization ration δash is accurately determined. In this paper, the δash value [δash = (40.5 ± 2.0)%] is derived from literature laboratory measurements on a scattering matrix to ensure ash particle specificity. It is shown that traditional approaches, based on direct lidar depolarization ratio δa measurements, are only valid very close to the source region, because δa may be very different from δash, when nonash particles are present. For the first time, observed lidar depolarization ratios, in the range from a few percent to 40%, are hence interpreted in comparison with δash taken as a reference. It is then shown how to use the sensitive and accurate UV polarization measurements to access to the size-averaged number concentration vertical profile of volcanic ash particles in the troposphere. Vertical profiles of the backscattering coefficient specific to volcanic ash particles, providing altitude-resolved ash particle number concentrations, are presented in the troposphere after optical scattering computation. This new methodology can be applied to other aerosols events and for other optical remote sensing experiments.

Corresponding author address: P. Rairoux, LASIM Laboratory Lyon 1 University and CNRS UMR 5579, Villeurbanne, France. E-mail: amiffre@lasim.univ-lyon1.fr

Abstract

In this paper, accurate UV polarization measurements are performed on a volcanic ash cloud after long-range transport at Lyon, France (45.76°N, 4.83°E). The volcanic particles are released from the mid-April 2010 eruption of the Eyjafjallajökull Icelandic volcano (63.63°N, 19.62°W). The aerosol UV depolarization, which arises from nonspherical volcanic ash particles, serves as an independent means to discriminate ash from nonash particles in the volcanic cloud. This discrimination is only feasible if the intrinsic ash particle depolarization ration δash is accurately determined. In this paper, the δash value [δash = (40.5 ± 2.0)%] is derived from literature laboratory measurements on a scattering matrix to ensure ash particle specificity. It is shown that traditional approaches, based on direct lidar depolarization ratio δa measurements, are only valid very close to the source region, because δa may be very different from δash, when nonash particles are present. For the first time, observed lidar depolarization ratios, in the range from a few percent to 40%, are hence interpreted in comparison with δash taken as a reference. It is then shown how to use the sensitive and accurate UV polarization measurements to access to the size-averaged number concentration vertical profile of volcanic ash particles in the troposphere. Vertical profiles of the backscattering coefficient specific to volcanic ash particles, providing altitude-resolved ash particle number concentrations, are presented in the troposphere after optical scattering computation. This new methodology can be applied to other aerosols events and for other optical remote sensing experiments.

Corresponding author address: P. Rairoux, LASIM Laboratory Lyon 1 University and CNRS UMR 5579, Villeurbanne, France. E-mail: amiffre@lasim.univ-lyon1.fr
Save
  • Alvarez, J., and Coauthors, 2006: Calibration technique for polarization-sensitive Lidars. J. Atmos. Oceanic Technol., 23, 683699.

  • Ansmann, A., and Coauthors, 2010: The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany. Geophys. Res. Lett., 37, L13810, doi:10.1029/2010GL043809.

    • Search Google Scholar
    • Export Citation
  • Carrico, C. M., Kus P. , Rood M. J. , Quinn P. K. , and Bates T. S. , 2003: Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties as a function of relative humidity. J. Geophys. Res., 108, 8650, doi:10.1029/2003JD003405.

    • Search Google Scholar
    • Export Citation
  • Delmelle, P., Villiéras F. , and Pelletier M. , 2005: Surface area, porosity and water adsorption properties of fine volcanic ash particles. Bull. Volcanol., 67, 160169.

    • Search Google Scholar
    • Export Citation
  • Ilyinskaya, E., Tsanev V. I. , Martin R. S. , Oppenheimer C. , Le Blond J. , Sawyer G. M. , and Gudmundsson M. T. , 2011: Near source observations of aerosol size-distribution in the eruptive plumes from Eyjafjallajökull volcano, March-April 2010. Atmos. Environ., 45, 32103216.

    • Search Google Scholar
    • Export Citation
  • Kaaden, N., and Coauthors, 2009: State of mixing, shape factor, number size distribution, and hygroscopic growth of the Saharan anthropogenic and mineral dust aerosol at Tinfou, Marocco. Tellus, 61B, 5163.

    • Search Google Scholar
    • Export Citation
  • Klett, J., 1985: Lidar inversion with variable backscatter/extinction ratios. Appl. Opt., 24, 16381643.

  • Lathem, T. L., Kumar P. , Nenes A. , Dufek J. , Sokolik I. N. , Trail M. , and Russell A. , 2011: Hygroscopic properties of volcanic ash. Geophys. Res. Lett., 38, L11802, doi:10.1029/2011GL047298.

    • Search Google Scholar
    • Export Citation
  • Lindqvist, L., Nousiainen T. , Zubko E. , and Muñoz O. , 2011: Optical modeling of vesicular ash particles. J. Quant. Spectrosc. Radiat. Transfer, 112, 18711880.

    • Search Google Scholar
    • Export Citation
  • Mather, T. A., Pyle D. M. , and Oppenheimer C. , 2003: Tropospheric volcanic aerosol. Volcanism and the Earth’s Atmosphere, Geophys. Monogr., Vol. 139, Amer. Geophys. Union, 189–212.

  • Miffre, A., David G. , Thomas B. , and Rairoux P. , 2011: Atmospheric non‐spherical particles optical properties from UV‐polarization lidar and scattering matrix. Geophys. Res. Lett.,38, L16804, doi:10.1029/2011GL048310.

  • Mishchenko, M. I., Travis L. D. , and Lacis A. A. , 2002: Scattering, Absorption and Emission of Light by Small Particles. 3rd ed. Cambridge University Press, 426 pp.

  • Mishchenko, M. I., and Coauthors, 2004: Scattering and radiative properties of semi-external versus external mixtures of different aerosols types. J. Quant. Spectrosc. Radiat. Transfer, 88, 139147.

    • Search Google Scholar
    • Export Citation
  • Mueller, D., Wandinger U. , Althausen D. , and Fiebig M. , 2001: Comprehensive particle characterization from three-wavelength Raman-lidar observations. Appl. Opt., 40, 48634869.

    • Search Google Scholar
    • Export Citation
  • Muñoz, O., Volten H. , Hovenier J. W. , Veihelmann B. , van der Zande W. J. , Waters L. B. F. M. , and Rose W. I. , 2004: Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr volcanoes. J. Geophys. Res., 109, D16201, doi:10.1029/2004JD004684.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39, 71122.

  • Ravishankara, A. R., 1997: Heterogeneous and multiphase chemistry in the troposphere. Science, 278, 10581065.

  • Riley, C. M., Rose W. I. , and Bluth G. J. S. , 2003: Quantitative shape measurements of distal volcanic ash. J. Geophys. Res., 108, 2504, doi:10.1029/2001JB000818.

    • Search Google Scholar
    • Export Citation
  • Sakai, T., Nagai T. , Zaizen Y. , and Mano Y. , 2010: Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber. Appl. Opt., 49, 44414449.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Zhu J. , Webley P. , Dean K. , and Cobb P. , 2007: Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska. Geophys. Res. Lett., 34, L08803, doi:10.1029/2006GL027237.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., and Coauthors, 2011: Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010. Atmos. Chem. Phys., 11, 22452279.

    • Search Google Scholar
    • Export Citation
  • Shimizu, A., and Coauthors, 2004: Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J. Geophys. Res., 109, D19S17, doi:10.1029/2002JD003253.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and Seibert P. , 1998: Accuracy of trajectories as determined from the conservation of meteorological tracers. Quart. J. Roy. Meteor. Soc., 124, 14651480.

    • Search Google Scholar
    • Export Citation
  • Tesche, M., Ansmann A. , Müller D. , Althausen D. , Engelmann R. , Freudenthaler V. , and Groß S. , 2009: Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res., 114, D13202, doi:10.1029/2009JD011862.

    • Search Google Scholar
    • Export Citation
  • Tsanev, V. I., Mather T. A. , cited 2007: MicrotopsII inverse. NERC Field Spectroscopy Facility. [Available online at http://fsf.nerc.ac.uk/resources/software/MicrotopsInverse.shtml.]

  • Veselovskii, I., and Coauthors, 2010: Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements. J. Geophys. Res., 115, D21203, doi:10.1029/2010JD014139.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and Coauthors, 2008: Volcanic dust characterization by EARLINET during Etna’s eruptions in 2001-2002. Atmos. Environ., 42, 893905.

    • Search Google Scholar
    • Export Citation
  • Winchester, L. W., 1998: Determination of the complex refractive index of samples of volcanic ash. NASA Contract Rep. S01394G.

  • Winker, D. M., and Osborn M. T. , 1992: Preliminary analysis of observations of the Pinatubo volcanic cloud with a polarization-sensitive lidar. Geophys. Res. Lett., 19, 171174.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 305 161 15
PDF Downloads 169 27 3