• Boukabara, S.-A., Weng F. , and Liu Q. , 2007: Passive microwave remote sensing of extreme weather events using NOAA-18 AMSU-A and MHS. IEEE Trans. Geosci. Remote Sens., 45, 22282246.

    • Search Google Scholar
    • Export Citation
  • Collins, W. G., 2001a: The operational complex quality control of radiosonde heights and temperatures at the National Centers for Environmental Prediction. Part I: Description of the method. J. Appl. Meteor., 40, 137151.

    • Search Google Scholar
    • Export Citation
  • Collins, W. G., 2001b: The operational complex quality control of radiosonde heights and temperatures at the National Centers for Environmental Prediction. Part II: Examples of error diagnosis and correction from operational use. J. Appl. Meteor., 40, 152168.

    • Search Google Scholar
    • Export Citation
  • Durre, I., Vose R. S. , and Wuertz D. B. , 2006: An overview of the Integrated Global Radiosonde Archive. J. Climate, 19, 5368.

  • Durre, I., Vose R. S. , and Wuertz D. B. , 2008: Robust automated quality assurance of radiosonde temperatures. J. Appl. Meteor. Climatol., 47, 20812095.

    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., Qu Y. , McMillin L. M. , Wolf W. W. , Zhou L. , and Divakarla M. , 2003: AIRS near-real-time products and algorithms in support of operational weather prediction. IEEE Trans. Geosci. Remote Sens., 41, 379389.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., Wee T.-K. , Sokolovskiv S. , Rocken C. , Schreiner W. , Hunt D. , and Anthes R. A. , 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., and Hajj G. A. , 2001: A comparison of water vapor derived from GPS occultations and global weather analyses. J. Geophys. Res., 106, 11131138.

    • Search Google Scholar
    • Export Citation
  • Ma, X., Schmit T. , and Smith W. , 1999: A nonlinear physical retrieval algorithm and its application to the GOES 8/9 sounder. J. Appl. Meteor., 38, 501513.

    • Search Google Scholar
    • Export Citation
  • Maddy, E. S., and Barnet C. D. , 2008: Vertical resolution estimates in version 5 of AIRS operational retrievals. IEEE Geosci. Remote Sens., 46, 23752384.

    • Search Google Scholar
    • Export Citation
  • Maddy, E. S., Barnet C. D. , and Gambacorta A. , 2009: A computationally efficient retrieval algorithm for hyperspectral sounders incorporating a priori information. IEEE Geosci. Remote Sens. Lett., 6, 802806.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., Vömel H. , Whiteman D. N. , Lesht B. M. , Schmidlin F. J. , and Russo F. , 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res., 111, D09S10, doi:10.1029/2005JD006083.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., Seko H. , and Shoji Y. , 2004: Dry biases of humidity measurements from the Vaisala RS80-A and Meisei RS2-91 radiosondes and from ground-based GPS. J. Meteor. Soc. Japan, 82, 277299.

    • Search Google Scholar
    • Export Citation
  • Pougatchev, N., August T. , Calbet X. , Hultberg T. , Oduleye O. , Schlussel P. , Stiller B. , Germain K. S. , and Bingham G. , 2009: IASI temperature and water vapor retrievals—Error assessment and validation. Atmos. Chem. Phys. Discuss., 9, 79717989, doi:10.5194/acpd-9-7971-2009.

    • Search Google Scholar
    • Export Citation
  • Reale, A., 2001: NOAA operational sounding products from Advanced-TOVS polar orbiting environmental satellites. NOAA Tech. Rep. NESDIS 102, 59 pp.

  • Reale, A., Chalfant M. W. , Wagoner R. V. , and Gardiner T. J. , 1994: TOVS operational sounding upgrades: 1990-1992. NOAA Tech. Rep. NESDIS 52, 57 pp.

  • Reale, A., Tilley F. , Ferguson M. , and Allegrino A. , 2008: NOAA operational sounding products for ATOVS. Int. J. Remote Sens., 29, 46154651.

    • Search Google Scholar
    • Export Citation
  • Reale, A., Sun B. , Pettey M. , and Tilley F. , 2010: The NOAA products validation system (NPROVS) and archive summary system (NARCSS). Preprints, Sixth Annual Symp. on Future Operational Environmental Satellite Systems NPOESS and GOES R, Atlanta, GA, Amer. Meteor. Soc., 9.2. [Available online at http://www.star.nesdis.noaa.gov/smcd/opdb/poes/documents/bios/AMSNPROVSNPOESSAMS10.pdf.]

  • Rodgers, C. D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys., 14, 609624.

    • Search Google Scholar
    • Export Citation
  • Schlussel, P., Hultberg T. H. , Phillips P. L. , August T. , and Calbet X. , 2005: The operational IASI level 2 processor. Adv. Space Res., 26, 982988.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and Coauthors, 2009: Reference upper-air observations for climate: Rational, progress, and plans. Bull. Amer. Meteor. Soc., 90, 361369.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Sun B. , Pettey M. , Reale A. and Immler F. , 2011: Global radiosonde balloon drift statistics. J. Geophys. Res., 116, D07102, doi:10.1029/2010JD014891.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., Lanzante J. R. , and Meyer C. L. , 2005: Radiosonde daytime biases and late-20th century warming. Science, 309, 15561559.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., and Woolf H. M. , 1976: The use of eigenvectors of statistical co-variance matrices for interpreting satellite sounding radiometer observations. J. Atmos. Sci., 33, 11271140.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and Lanzante J. R. , 1996: An assessment of satellite and radiosonde climatologies of upper tropospheric water vapor. J. Climate, 9, 12351250.

    • Search Google Scholar
    • Export Citation
  • Sun, B., Reale A. , Seidel D. J. , and Hunt D. C. , 2010: Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J. Geophys. Res., 115, D23104, doi:10.1029/2010JD014457.

    • Search Google Scholar
    • Export Citation
  • Sun, B., Reale A. L. , Seidel D. , Ballish B. , Schroeder S. , Cucurrul L. , Pettey M. , and Tilley F. , 2011: Using GPS radio occultation data to examine radiation-induced biases in global radiosonde data. Preprints, 15th Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans and Land Surface (IOAS-AOLS), Seattle, WA, Amer. Meteor. Soc., 6.2. [Available online at http://ams.confex.com/ams/91Annual/webprogram/Paper185062.html.]

  • Susskind, J., Barnet C. D. , and Blaisdell J. M. , 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390409.

    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., and Coauthors, 2006: Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res., 111, D09S14, doi:10.1029/2005JD006103.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., David D. E. , and Smith K. , 2007: Accuracy of tropospheric and stratospheric water vapor measurements by a cryogenic frost point hygrometer: Instrument details and observations. J. Geophys. Res., 112, D08305, doi:10.1029/2006JD007224.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Zhang L. , 2008: Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. J. Climate, 21, 22182238.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Carlson D. J. , Parsons D. B. , Hock T. F. , Lauritsen D. , Cole H. L. , Beierle K. , and Chamberlain E. , 2003: Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygristor and its climate implication. Geophys. Res. Lett., 30, 1860, doi:10.1029/2003GL016985.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1957: Meteorology –A three-dimensional science: Second session of the Commission for Aerology. WMO Bull., IV (5), 134138.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 269 160 0
PDF Downloads 97 51 0

The NOAA Products Validation System (NPROVS)

View More View Less
  • 1 NOAA/NESDIS, Washington, D.C.
  • | 2 IM Systems Group, Inc., Rockville, Maryland
Restricted access

Abstract

The following report summarizes the NOAA Products Validation System (NPROVS), operated at the NOAA National Environmental Satellite, Data, and Information Service (NESDIS) Center for Satellite Applications and Research (STAR). NPROVS provides centralized collocation and intercomparison of multiple suites of satellite-derived atmospheric sounding products, global operational radiosonde and dropsonde observations, and numerical weather prediction (NWP) data. The report addresses the screening and processing of radiosonde and dropsonde data, the method of collocating to the respective satellite product data, and perceived characteristic differences among the respective satellite products. The analysis of characteristic tendencies among the satellite products underscores the need for absolute consistency when compiling validation datasets of respective satellite, ground target, and NWP observations in order to minimize the varying degrees of inherent differences among these systems.

The access and collocation of sonde and satellite observations occur on a daily basis with the routine archiving of all collocated data at STAR. The minimum requirement for retaining a given sonde is that the collective temperature and moisture profiles extend vertically at least 5 km without a gap. Retained reports are further processed including analysis to identify suspicious observations, temperature and moisture profile features, and impacts when applying sampling constraints. The collocation approach is optimized for each satellite system to select a single “closest” sounding from each satellite that lies within 6 h and 250 km of a given sonde. The NPROVS analytical and graphical interface provides a dual troubleshooting function to assure the integrity of collocations and validation function for intercomparing the satellite products. Results indicate notable differences in the perceived characteristic of the products systems with seasonal tendencies.

Corresponding author address: Tony Reale, NOAA Science Center, 5200 Auth Rd., Rm. 701, Camp Springs, MD 20746. E-mail: tony.reale@noaa.gov

Abstract

The following report summarizes the NOAA Products Validation System (NPROVS), operated at the NOAA National Environmental Satellite, Data, and Information Service (NESDIS) Center for Satellite Applications and Research (STAR). NPROVS provides centralized collocation and intercomparison of multiple suites of satellite-derived atmospheric sounding products, global operational radiosonde and dropsonde observations, and numerical weather prediction (NWP) data. The report addresses the screening and processing of radiosonde and dropsonde data, the method of collocating to the respective satellite product data, and perceived characteristic differences among the respective satellite products. The analysis of characteristic tendencies among the satellite products underscores the need for absolute consistency when compiling validation datasets of respective satellite, ground target, and NWP observations in order to minimize the varying degrees of inherent differences among these systems.

The access and collocation of sonde and satellite observations occur on a daily basis with the routine archiving of all collocated data at STAR. The minimum requirement for retaining a given sonde is that the collective temperature and moisture profiles extend vertically at least 5 km without a gap. Retained reports are further processed including analysis to identify suspicious observations, temperature and moisture profile features, and impacts when applying sampling constraints. The collocation approach is optimized for each satellite system to select a single “closest” sounding from each satellite that lies within 6 h and 250 km of a given sonde. The NPROVS analytical and graphical interface provides a dual troubleshooting function to assure the integrity of collocations and validation function for intercomparing the satellite products. Results indicate notable differences in the perceived characteristic of the products systems with seasonal tendencies.

Corresponding author address: Tony Reale, NOAA Science Center, 5200 Auth Rd., Rm. 701, Camp Springs, MD 20746. E-mail: tony.reale@noaa.gov
Save