• Banta, R. M., and Coauthors, 2005: A bad air day in Houston. Bull. Amer. Meteor. Soc., 86, 657471.

  • Bell, M. L., McDermott A. , Zeger S. L. , Sarnet J. M. , Dominici F. , 2004: Ozone and short-term mortality in 95 US urban communities, 1987–2000. J. Amer. Med. Assoc., 292, 23722378.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., 1997: Mixing height estimation from SODAR data—A critical discussion. Atmos. Environ., 31, 39413953.

  • Bryan, A., Komhyr W. , Johnson B. , Voemel H. , Taylor M. , and Morris G. , cited 2010: Ozonesonde reference manual web site. Tropospheric Ozone Pollution Project at Valparaiso University. [Available online at http://physics.valpo.edu/ozone/manual.html.]

    • Search Google Scholar
    • Export Citation
  • Day, B. M., Rappengluck B. , Clements C. B. , Tucker S. C. , and Brewer W. A. , 2009: Nocturnal boundary layer characteristics and land breeze development in Houston, Texas during TexAQS II. Atmos. Environ., 44, 40144023, doi:10.1016/j.atmosenv.2009.01.031.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., and Schäfer K. , 2006: Remote sensing methods to investigate boundary-layer structures relevant to air pollution in cities. Bound.-Layer Meteor., 121, 377385, doi:10.1007/s10546-006-9068-2.

    • Search Google Scholar
    • Export Citation
  • Eresmaa, N., Karppinen A. , Joffre S. M. , Räsänen J. , and Talvitie H. , 2006: Mixing height determination by ceilometer. Atmos. Chem. Phys., 6, 14851493, doi:10.5194/acp-6-1485-2006.

    • Search Google Scholar
    • Export Citation
  • Güsten, H., and Coauthors, 1996: On-line measurements of ozone surface fluxes: Part II. Surface-level ozone fluxes onto the Sahara desert. Atmos. Environ., 30, 911918.

    • Search Google Scholar
    • Export Citation
  • Holzworth, C. G., 1964: Estimates of mean maximum mixing depths in the contiguous United States. Mon. Wea. Rev., 92, 235242.

  • Holzworth, C. G., 1967: Mixing depths, wind speeds and air pollution potential for selected locations in the United States. J. Appl. Meteor., 6, 10391044.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., Wai Lim K. , Shia R. L. , Li Q. , Elkins J. W. , Prinn R. G. , and Yung Y. L. , 2007: Seasonal cycle of N2O: Analysis of data. Global Biogeochem. Cycles, 21, GB1006, doi:10.1029/2006GB002691.

    • Search Google Scholar
    • Export Citation
  • Komhyr, W. D., 1986: Operations handbook: Ozone measurements to 40 km altitude with mode 4A Electrochemical Concentration Cell (ECC) ozonesondes (used with 1680-Mhz radiosondes). NOAA Tech. Memo. ERLARL-149, 49 pp.

  • Kovalev, V., and Eichinger W. , 2004: Elastic Lidar: Theory, Practice and Analysis Methods. Wiley and Sons, 615 pp.

  • Lee, S.-H., and Coauthors, 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 21272143.

    • Search Google Scholar
    • Export Citation
  • Lippmann, M., 1991: Health effects of tropospheric ozone. Environ. Sci. Technol., 25, 19541962.

  • Martucci, G., Matthey R. , and Mitev V. , 2007: Comparison between backscatter lidar and radiosonde measurements of the diurnal and nocturnal stratification in the lower stratosphere. J. Atmos. Oceanic Technol., 24, 13311244.

    • Search Google Scholar
    • Export Citation
  • McConnell, R. K., and Coauthors, 2002: Asthma in exercising children exposed to ozone: A cohort study. Lancet, 359, 386391.

  • Morris, G. A., and Coauthors, 2006: Alaskan and Canadian forest fires exacerbate ozone pollution over Houston, Texas, on 19 and 20 July 2004. J. Geophys. Res., 111, D24S03, doi:10.1029/2006JD007090.

    • Search Google Scholar
    • Export Citation
  • Morris, G. A., Komhyr W. D. , Hirokawa J. , Flynn J. , Lefer B. , Krotkov N. , and Ngan F. , 2010: A balloon sounding technique for measuring SO2 plumes. J. Atmos. Oceanic Technol., 27, 13181330.

    • Search Google Scholar
    • Export Citation
  • Münkel, C., Noora E. , Räsänen J. , and Karppinen A. , 2007: Retrieval of mixing height and dust concentration with lidar ceilometer. Bound.-Layer Meteor., 124, 117128, doi:10.1007/s10546-006-9103-3.

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., and Coauthors, 2008: Multisensor estimation of mixing heights over a coastal city. J. Appl. Meteor. Climatol., 47, 2743.

    • Search Google Scholar
    • Export Citation
  • Poberaj, C. S., Staehelin J. , Brunner D. , Thouret V. , Backer H. D. , and Stübi R. , 2009: Long term changes in UT/LS ozone between the late 1970s and the 1990s deduced from the GASP and MOZAIC aircraft programs and from ozonesondes. Atmos. Chem. Phys., 9, 24352499, doi:10.5194/acpd-9-2435-2009.

    • Search Google Scholar
    • Export Citation
  • Rappenglück, B., Perna R. , Zhong S. , and Morris G. A. , 2008: An analysis of the vertical structure of the atmosphere and the upper-level meteorology and their impact on surface ozone levels in Houston, Texas. J. Geophys. Res., 113, D17315, doi:10.1029/2007JD009745.

    • Search Google Scholar
    • Export Citation
  • Seibert, P., Beyrich F. , Gryning S.-E. , Joffre S. , Rasmussen A. , and Tercier P. , 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027.

    • Search Google Scholar
    • Export Citation
  • Smit, H. G., and Coauthors, 2007: Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: Insights from the Jülich Ozone Sonde Intercomparison Experiment (JOSIE). J. Geophys. Res., 112, D19306, doi:10.1029/2006JD007308.

    • Search Google Scholar
    • Export Citation
  • Steyn, D. G., Baldi M. , and Hoff R. M. , 1999: Detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J. Atmos. Oceanic Technol., 16, 953959.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Vaisala, 2009: CL31 ceilometer special settings for aerosol application. Vaisala Doc. 1-2, 2 pp.

  • van der Kamp, D., and McKendry I. , 2010: Diurnal and seasonal trends in convective mixed-layer heights estimated from two years of continuous ceilometer observations in Vancouver, BC. Bound.-Layer Meteor., 137, 459475, doi:10.1007/s10546-010-9535-7.

    • Search Google Scholar
    • Export Citation
  • Velasco, E., and Coauthors, 2008: Vertical distribution of ozone and VOCs in the low boundary layer of Mexico City. Atmos. Chem. Phys., 8, 30613079, doi:10.5194/acp-8-3061-2008.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., Heejin I. , and Clements C. , 2007: Impact of turbulence, land surface, and radiation parameterizations on simulated boundary layer properties in a coastal environment. J. Geophys. Res., 112, D13110, doi:10.1029/2006JD008274.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 291 178 0
PDF Downloads 208 114 0

Seasonal Variability in the Diurnal Evolution of the Boundary Layer in a Near-Coastal Urban Environment

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas
  • | 2 Department of Physics and Astronomy, Valparaiso University, Valparaiso, Indiana
Restricted access

Abstract

Boundary layer height is estimated during a 21-month period in Houston, Texas, using continuous ceilometer observations and the minimum-gradient method. A comparison with over 60 radiosondes indicates overall agreement between ceilometer- and radiosonde-estimated PBL and residual layer heights. Additionally, the ceilometer-estimated PBL heights agree well with 31 vertical profiles of ozone. Difficulty detecting the PBL height occurs immediately following a frontal system with precipitation, during periods with high wind speeds, and in the early evening when convection is weakening, a new stable surface layer is forming, and the lofted aerosols detected by the lidar do not represent the PBL. Long-term diurnal observations of the PBL height indicate nocturnal PBL heights range from approximately 100 to 300 m throughout the year, while the convective PBL displays more seasonal and daily variability typically ranging from 1100 m in the winter to 2000 m in the summer.

Corresponding author address: Christine L. Haman, 312 Science & Research 1, Rm. #312, Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204-5007. E-mail: clhaman@hotmail.com

Abstract

Boundary layer height is estimated during a 21-month period in Houston, Texas, using continuous ceilometer observations and the minimum-gradient method. A comparison with over 60 radiosondes indicates overall agreement between ceilometer- and radiosonde-estimated PBL and residual layer heights. Additionally, the ceilometer-estimated PBL heights agree well with 31 vertical profiles of ozone. Difficulty detecting the PBL height occurs immediately following a frontal system with precipitation, during periods with high wind speeds, and in the early evening when convection is weakening, a new stable surface layer is forming, and the lofted aerosols detected by the lidar do not represent the PBL. Long-term diurnal observations of the PBL height indicate nocturnal PBL heights range from approximately 100 to 300 m throughout the year, while the convective PBL displays more seasonal and daily variability typically ranging from 1100 m in the winter to 2000 m in the summer.

Corresponding author address: Christine L. Haman, 312 Science & Research 1, Rm. #312, Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204-5007. E-mail: clhaman@hotmail.com
Save