• Ackerman, S. A., Smith W. L. , Revercomb H. E. , and Spinhirne J. D. , 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8–12 μm window. Mon. Wea. Rev., 118, 23772388.

    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., and Coauthors, 2005: An “A-Train” strategy for quantifying direct climate forcing by anthropogenic aerosols. Bull. Amer. Meteor. Soc., 86, 17951809.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 110, 12391260.

  • Baran, A. J., and C.-Labonnote L. , 2007: A self-consistent scattering model for cirrus. I: The solar region. Quart. J. Roy. Meteor. Soc., 133, 18991912.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., Yang P. , and Havemann S. , 2001: Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: A comparison of the T-matrix and the finite-difference time-domain methods. Appl. Opt., 40, 43764386, doi:10.1364/AO.40.004376.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., Yang P. , Heymsfield A. J. , Platnick S. , King M. D. , Hu Y.-X. , and Bedka S. T. , 2005: Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44, 18961911.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., Yang P. , Heymsfield A. J. , Schmitt C. G. , Xie Y. , Bansemer A. , Hu Y.-X. , and Zhang Z. , 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 10371056.

    • Search Google Scholar
    • Export Citation
  • Brogniez, G., Parol F. , Buriez J.-C. , and Fouquart Y. , 1992: Bidirectional reflectances of cirrus clouds modelized from observations during the International Cirrus Experiment’98. Proceedings of the International Radiation Symposium, S. Keevallik and O. Karner, Eds., A. Deepak Publishing, 133–136.

  • Brogniez, G., Pietras C. , Legrand M. , Dubuisson P. , and Haeffelin M. , 2003: A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part II: Behavior in field experiments. J. Atmos. Oceanic Technol., 20, 10231033.

    • Search Google Scholar
    • Export Citation
  • Brogniez, G., and Coauthors, 2004: Determination of cirrus radiative parameters from combination between active and passive remote sensing measurements during FRENCH/DIRAC 2001. Atmos. Res., 72, 425452.

    • Search Google Scholar
    • Export Citation
  • Brogniez, G., Legrand M. , Damiri B. , Behnert I. , and Buis J.-P. , 2005: Multi-channel ground based and airborne infrared radiometers. NEWRAD Proc. Ninth Int. Conf. on New Developments and Applications in Optical Radiometry, Davos, Switzerland, Physikalisch- Meteorologisches Observatorium Davos, World Radiation Center, 173–174.

  • Chepfer, H., Brogniez G. , Sauvage L. , Flamant P. H. , Trouillet V. , and Pelon J. , 1999: Remote sensing of cirrus radiative parameters during EUCREX’94. Case study of 17 April 1994. Part II: Microphysical models. Mon. Wea. Rev., 127, 504518.

    • Search Google Scholar
    • Export Citation
  • C.-Labonnote, L., Brogniez G. , Doutriaux-Boucher M. , Buriez J.-C. , Gayet J.-F. , and Chepfer H. , 2000: Modeling of light scattering in cirrus clouds with inhomogeneous hexagonal monocrystals: Comparison with in situ and ADEOS-POLDER measurements. Geophys. Res. Lett., 27, 113116.

    • Search Google Scholar
    • Export Citation
  • C.-Labonnote, L., Brogniez G. , Buriez J.-C. , Doutriaux-Boucher M. , Gayet J.-F. , and Macke A. , 2001: Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements. J. Geophys. Res., 106, 12 13912 153.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Kneizyx F. X. , and Davies R. W. , 1989: Line shape and the water vapor continuum. Atmos. Res., 23, 229241.

  • Corlay, G., Arnolfo M.-C. , Bret-Dibat T. , Lifferman A. , and Pelon J. , 2000: The infrared imaging radiometer for PICASSO-CENA. Tech. Rep., 14 pp. [Available online at http://smsc.cnes.fr/CALIPSO/IIR_ICSO00_S2-06.pdf.]

  • Delanoë, J., and Hogan R. J. , 2010: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Dubuisson, P., Giraud V. , Chomette O. , Chepfer H. , and Pelon J. , 2005: Fast radiative transfer modeling for infrared imaging radiometry. J. Quant. Spectrosc. Radiat. Transfer, 95, 201220.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and Coauthors, 2005: Evolution of a Florida cirrus anvil. J. Atmos. Sci., 62, 23522372.

  • Gayet, J.-F., and Coauthors, 1998: In situ measurements of the scattering phase function of stratocumulus, contrails and cirrus. Geophys. Res. Lett., 25, 971974.

    • Search Google Scholar
    • Export Citation
  • Giver, L. P., Chackerian C. Jr., and Varanasi P. , 2000: Visible and near infrared H2O line intensity corrections for HITRAN-96. J. Quant. Spectrosc. Radiat. Transfer, 66, 101105.

    • Search Google Scholar
    • Export Citation
  • King, M. D., Platnick S. , Wind G. , Arnold G. T. , and Dominguez R. T. , 2010: Remote sensing of radiative and microphysical properties of clouds during TC4: Results from MAS, MASTER, MODIS, and MISR. J. Geophys. Res., 115, D00J07, doi:10.1029/2009JD013277.

    • Search Google Scholar
    • Export Citation
  • Knapp, W. H., Hess M. , Stammes P. , Koelemeijer R. B. A. , and Watts P. D. , 1999: Cirrus optical thickness and crystal size retrieval from ATSR-2 data using phase functions of imperfect hexagonal ice crystals. J. Geophys. Res., 104, 31 72131 730.

    • Search Google Scholar
    • Export Citation
  • Knapp, W. H., C.-Labonnote L. , Brogniez G. , and Stammes P. , 2005: Modeling total and polarized reflectances of ice clouds: Evaluation by means of POLDER and ATSR-2 measurements. Appl. Opt., 44, 40604073.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., Baker B. A. , Schmitt C. G. , and Jensen T. L. , 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106 (D14), 14 98915 014.

    • Search Google Scholar
    • Export Citation
  • Legrand, M., Pietras C. , Brogniez G. , and Haeffelin M. , 2000: A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part I: Characterization of the instrument. J. Atmos. Oceanic Technol., 17, 12031214.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199.

  • Mioche, G., Josset D. , Gayet J.-F. , Pelon J. , Garnier A. , Minikin A. , and Schwarzenboeck A. , 2011: Validation of the CALIPSO-CALIOP extinction coefficients from in situ observations in midlatitude cirrus clouds during CIRCLE-2 experiment. J. Geophys. Res., 115, D00H25, doi:10.1029/2009JD012376.

    • Search Google Scholar
    • Export Citation
  • Paltridge, G. W., and Platt C. M. R. , 1981: Aircraft measurements of solar and infrared radiation and the microphysics of cirrus cloud. Quart. J. Roy. Meteor. Soc., 107, 367380.

    • Search Google Scholar
    • Export Citation
  • Parol, F., Buriez J.-C. , Brogniez G. , and Fouquart Y. , 1991: Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles. J. Appl. Meteor., 30, 973984.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., Schmetz J. , Heintzenberg J. , Kandel R. , and Saunders R. W. , 1990: The International Cirrus Experiment (ICE): A joint European effort. ESA J., 14, 193199.

    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., Chance K. , Schroeder J. , and Goldman A. , 2001: New edition of HITRAN data base. Proc. 11th ARM Science Team Meeting, Atlanta, GA, ARM. [Available online at http://www.arm.gov/publications/proceedings/conf11/extended_abs/rothman_ls.pdf.]

  • Sauvage, L., Chepfer H. , Trouillet V. , Flamant P. H. , Brogniez G. , Pelon J. , and Albers F. , 1999: Remote sensing of cirrus radiative parameters during EUCREX’94. Case study of 17 April 1994. Part I: Observations. Mon. Wea. Rev., 127, 486503.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1979: Optical properties of eight water cloud types. Commonwealth Science and Industrial Research Organisation Division of Atmospheric Physics, Tech. Paper 36, 35 pp.

  • Takano, Y., and Liou K. N. , 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319.

    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., and Coauthors, 1999: Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 26 μm. J. Geophys. Res., 104, 20812092.

    • Search Google Scholar
    • Export Citation
  • Vaughan, G., Schiller C. , Mc Kenzie A. R. , Bower K. , Peter T. , Schlager H. , Harris N. P. R. , and May P. T. , 2005: SCOUT-O3/ACTIVE: High-altitude aircraft measurements around deep tropical convection. Bull. Amer. Meteor. Soc., 89, 647662.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., Hahn J. , London J. , Chervin R. M. , and Jenne R. L. , 1988: Global distribution of total cloud cover and cloud type amounts over the ocean. NCAR Tech. Note TN-317 + STR. [Available online at http://nldr.library.ucar.edu/repository/collections/TECH-NOTE-000-000-000-467.]

  • WCP, 1986: A preliminary cloudless standard atmosphere for radiation computation. WCP-112, WMO/TD 24, 53 pp.

  • Wilber, A. C., Kratz D. P. , and Gupta S. K. , 1999: Surface emissivity maps for use in satellite retrievals of longwave radiation. Langley Research Center, NASA/TP-1000-209362, 35 pp.

  • Yang, P., Gao B. C. , Baum B. A. , Hu Y. , Wiscombe W. , Tsay S. C. , Winker D. M. , and Nasiri S. L. , 2001: Radiative properties of cirrus clouds in the infrared (8-13 μm) spectral region. J. Quant. Spectrosc. Radiat. Transfer, 70, 473504.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 81 38 0
PDF Downloads 31 10 0

Validation of IIR/CALIPSO Level 1 Measurements by Comparison with Collocated Airborne Observations during CIRCLE-2 and Biscay ‘08 Campaigns

View More View Less
  • 1 Laboratoire d’Optique Atmosphérique, Université de Lille 1, Sciences et Technologies, Villeneuve d’Ascq, France
  • | 2 Laboratoire Atmosphères, Milieux, Observations Spatiales, Université Pierre et Marie Curie, Paris, France
  • | 3 Laboratoire d’Optique Atmosphérique, Université de Lille 1, Sciences et Technologies, Villeneuve d’Ascq, France
  • | 4 Laboratoire Atmosphères, Milieux, Observations Spatiales, Université Pierre et Marie Curie, Paris, France
  • | 5 Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Restricted access

Abstract

In the frame of validation of the spatial observations from the radiometer IIR on board CALIPSO, the two airborne campaigns Cirrus Cloud Experiment (CIRCLE)-2 and Biscay ‘08 took place in 2007 and 2008 in the western part of France, over the Atlantic Ocean. During these experiments, remote sensing measurements were made over cirrus clouds, right under the track of Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) in space and time collocation. For this purpose, a Falcon-20 aircraft was equipped with the Lidar pour l’Etude des Interactions Aérosols Nuages Dynamique Rayonnement et du Cycle de l’Eau (LEANDRE)-New Generation (NG) and the thermal infrared radiometer Conveyable Low-Noise Infrared Radiometer for Measurements of Atmosphere and Ground Surface Targets (CLIMAT)-Airborne Version (AV), whose spectral characteristics are strongly similar to those of the infrared imaging radiometer (IIR). In situ measurements were also taken in cirrus clouds during CIRCLE-2. After comparisons, consistent agreements are found between brightness temperatures measured by CLIMAT-AV and IIR. However, deviations in the brightness temperature measurements are still observed, mainly in the 8.6-μm channels. Simulations using a radiative transfer code are performed along a perfectly clear-sky area to show that these dissimilarities are inherent in slight differences between the spectral channels of both radiometers, and in differences between their altitudes. Cloudy and imperfectly clear areas are found to be harder to interpret, but the measurements are still coherent by taking into account experimental uncertainties. In the end, IIR measurements can be validated unambiguously.

Corresponding author address: Pr. Gérard Brogniez Laboratoire d’Optique Atmosphérique, Université de Lille 1, Sciences et Technologies, Villeneuve d’Ascq 59650 CEDEX, France. E-mail: gerard.brogniez@univ-lille1.fr

Abstract

In the frame of validation of the spatial observations from the radiometer IIR on board CALIPSO, the two airborne campaigns Cirrus Cloud Experiment (CIRCLE)-2 and Biscay ‘08 took place in 2007 and 2008 in the western part of France, over the Atlantic Ocean. During these experiments, remote sensing measurements were made over cirrus clouds, right under the track of Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) in space and time collocation. For this purpose, a Falcon-20 aircraft was equipped with the Lidar pour l’Etude des Interactions Aérosols Nuages Dynamique Rayonnement et du Cycle de l’Eau (LEANDRE)-New Generation (NG) and the thermal infrared radiometer Conveyable Low-Noise Infrared Radiometer for Measurements of Atmosphere and Ground Surface Targets (CLIMAT)-Airborne Version (AV), whose spectral characteristics are strongly similar to those of the infrared imaging radiometer (IIR). In situ measurements were also taken in cirrus clouds during CIRCLE-2. After comparisons, consistent agreements are found between brightness temperatures measured by CLIMAT-AV and IIR. However, deviations in the brightness temperature measurements are still observed, mainly in the 8.6-μm channels. Simulations using a radiative transfer code are performed along a perfectly clear-sky area to show that these dissimilarities are inherent in slight differences between the spectral channels of both radiometers, and in differences between their altitudes. Cloudy and imperfectly clear areas are found to be harder to interpret, but the measurements are still coherent by taking into account experimental uncertainties. In the end, IIR measurements can be validated unambiguously.

Corresponding author address: Pr. Gérard Brogniez Laboratoire d’Optique Atmosphérique, Université de Lille 1, Sciences et Technologies, Villeneuve d’Ascq 59650 CEDEX, France. E-mail: gerard.brogniez@univ-lille1.fr
Save