A Novel Approach for the High-Resolution Interpolation of In Situ Sea Surface Salinity

Bruno Buongiorno Nardelli Istituto di Scienze dell’Atmosfera e del Clima, Rome, and Istituto per l’Ambiente Marino Costiero, Napoli, Italy

Search for other papers by Bruno Buongiorno Nardelli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A novel technique for the high-resolution interpolation of in situ sea surface salinity (SSS) observations is developed and tested. The method is based on an optimal interpolation (OI) algorithm that includes satellite sea surface temperature (SST) in the covariance estimation. The covariance function parameters (i.e., spatial, temporal, and thermal decorrelation scales) and the noise-to-signal ratio are determined empirically, by minimizing the root-mean-square error and mean error with respect to fully independent validation datasets. Both in situ observations and simulated data extracted from a numerical model output are used to run these tests. Different filters are applied to sea surface temperature data in order to remove the large-scale variability associated with air–sea interaction, because a high correlation between SST and SSS is expected only at small scales. In the tests performed on in situ observations, the lowest errors are obtained by selecting covariance decorrelation scales of 400 km, 6 days, and 2.75°C, respectively, a noise-to-signal ratio of 0.01 and filtering the scales longer than 1000 km in the SST time series. This results in a root-mean-square error of ~0.11 g kg−1 and a mean error of ~0.01 g kg−1, that is, reducing the errors by ~25% and ~60%, respectively, with respect to the first guess.

Corresponding author address: Bruno Buongiorno Nardelli, CNR-Istituto per l’Ambiente Marino Costiero, Calata Porta di Massa, 80133 Napoli, Italy. E-mail: bruno.buongiornonardelli@cnr.it

Abstract

A novel technique for the high-resolution interpolation of in situ sea surface salinity (SSS) observations is developed and tested. The method is based on an optimal interpolation (OI) algorithm that includes satellite sea surface temperature (SST) in the covariance estimation. The covariance function parameters (i.e., spatial, temporal, and thermal decorrelation scales) and the noise-to-signal ratio are determined empirically, by minimizing the root-mean-square error and mean error with respect to fully independent validation datasets. Both in situ observations and simulated data extracted from a numerical model output are used to run these tests. Different filters are applied to sea surface temperature data in order to remove the large-scale variability associated with air–sea interaction, because a high correlation between SST and SSS is expected only at small scales. In the tests performed on in situ observations, the lowest errors are obtained by selecting covariance decorrelation scales of 400 km, 6 days, and 2.75°C, respectively, a noise-to-signal ratio of 0.01 and filtering the scales longer than 1000 km in the SST time series. This results in a root-mean-square error of ~0.11 g kg−1 and a mean error of ~0.01 g kg−1, that is, reducing the errors by ~25% and ~60%, respectively, with respect to the first guess.

Corresponding author address: Bruno Buongiorno Nardelli, CNR-Istituto per l’Ambiente Marino Costiero, Calata Porta di Massa, 80133 Napoli, Italy. E-mail: bruno.buongiornonardelli@cnr.it
Save
  • Aretxabaleta, A. L., Gourrion J. , Ballabrera J. , Mourre B. , and Font J. , 2009: Global surface salinity variability: Modal characterization. Extended Abstracts,EGU General Assembly 2009, Vol. 11, Vienna, Austria, EGU, 10348.

  • Autret, E., and Piollé J.-F. , 2007: ODYSSEA global SST analysis—User manual. CERSAT–IFREMER MERSEA-WP02-IFR-STR-001-1A, 29 pp. [Available online at http://projets.ifremer.fr/cersat/content/download/2421/16770/file/MERSEA-WP02-IFR-STR-001-1A.pdf.]

  • Ballabrera-Poy, J., Mourre B. , García-Ladona E. , Turiel A. , and Font J. , 2009: Linear and non-linear T–S models for the eastern North Atlantic from Argo data: Role of surface salinity observations. Deep-Sea Res. I, 56, 16051614.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., Davis R. E. , and Fandry C. B. , 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res., 23, 559582.

    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., and Santoleri R. , 2004: Reconstructing synthetic profiles from surface data. J. Atmos. Oceanic Technol., 21, 693703.

    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., and Santoleri R. , 2005: Methods for the reconstruction of vertical profiles from surface data: Multivariate analyses, residual GEM and variable temporal signals in the North Pacific Ocean. J. Atmos. Oceanic Technol., 22, 17631782.

    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., Cavalieri O. , Rio M.-H. , and Santoleri R. , 2006: Subsurface geostrophic velocities inference from altimeter data: Application to the Sicily Channel (Mediterranean Sea). J. Geophys. Res., 111, C04007, doi:10.1029/2005JC003191.

    • Search Google Scholar
    • Export Citation
  • Charraudeau, R., and Gaillard F. , 2007: ISAS V4: Mise en place de la configuration. IFREMER Rep. LPO 07-09, 88 pp.

  • Dash, P., Ignatov A. , Kihai Y. , and Sapper J. , 2010: The SST Quality Monitor (SQUAM). J. Atmos. Oceanic Technol., 27, 18991917.

  • Donlon, C. J., and Coauthors, 2009: The GODAE High Resolution Sea Surface Temperature Pilot Project. Oceanography, 22 (3), 3445.

  • Drévillon, M., Régnier C. , Desportes C. , Greiner E. , and Guinehut S. , 2011: QuO Va Dis? The Mercator Ocean quarterly validation bulletin: Recent developments and prospect. Mercator Ocean Quarterly Newsletter, No. 41 (April), Mercator Ocean, 49–52.

  • Efron, B., and Tibshirani R. J. , 1993: An Introduction to the Bootstrap. Chapman & Hall/CRC, 456 pp.

  • Font, J., and Coauthors, 2010: SMOS: The challenging sea surface salinity measurement from space. Proc. IEEE, 98, 649665, doi:10.1109/JPROC.2009.2033096.

    • Search Google Scholar
    • Export Citation
  • Gaillard, F., Autret E. , Thierry V. , Galaup P. , Coatanoan C. , and Loubrieu T. , 2009a: Quality control of large Argo datasets. J. Atmos. Oceanic Technol., 26, 337351.

    • Search Google Scholar
    • Export Citation
  • Gaillard, F., Brion E. , and Charraudeau R. , 2009b: ISAS–V5: Description of the method and user manual. IFREMER Rapport LPO 09-04, 34 pp.

  • Gneiting, T., 1999: Correlation functions for atmospheric data analysis. Quart. J. Roy. Meteor. Soc., 125, 24492464, doi:10.1002/qj.49712555906.

    • Search Google Scholar
    • Export Citation
  • GOSUD Data Management Team, 2006: User’s manual. Ref.: go-um-02-01, Ref. IFREMER: cor-do/dti-mut/02-170, version 1.0, 24 pp.

  • Gouretski, V. V., and Koltermann K. P. , 2004: WOCE Global Hydrographic Climatology. Bundesamtes für Seeschiffahrt und Hydrographie Tech. Rep. 35/2004, 52 pp. [Available online at http://rda.ucar.edu/datasets/ds285.4/docs/bsh35_re.pdf.]

  • Gourrion, J., Ballabrera J. , Aretxabaleta A. L. , Turiel A. , Mourre B. , Kalaroni S. , and Hoaureau N. , 2010: Preliminary validation of SMOS products (Levels 3 and 4). Proc. Int. Geoscience and Remote Sensing Symp., IGARSS 2010, Honolulu, HI, IEEE, 3170–3173.

  • Guinehut, S., Le Traon P.-Y. , Larnicol G. , and Philipps S. , 2004: Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields—A first approach based on simulated observations. J. Mar. Syst., 46, 8598.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., 1999: Variability of the simulated meridional heat transport in the North Atlantic for the period 1951–1993. J. Geophys. Res., 104 (C5), 10 99111 007.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., 2002: Surface salinity in the northern North Atlantic. J. Geophys. Res., 107, 8003, doi:10.1029/2001JC00081.

  • Hollingsworth, A., and Lönnberg P. , 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111136.

    • Search Google Scholar
    • Export Citation
  • Jones, M. S., Allen M. , Guymer T. , and Saunders M. , 1998: Correlations between altimetric sea surface height and radiometric sea surface temperature in the South Atlantic. J. Geophys. Res., 103 (C4), 80738087.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G., and Font J. , 2010: SMOS and Aquarius/SAC-D missions: The era of spaceborne salinity measurements is about to begin. Oceanography from Space, V. Barale, J. F. R. Gower, and L. Alberotanza, Eds., Springer, 35–58.

  • Lagerloef, G., and Coauthors, 2010: Resolving the global surface salinity field and variations by blending satellite and in situ observations. Proc. OceanObs’09: Sustained Ocean Observations and Information for Society (Annex), ESA Publ. WPP-306, Venice, Italy, IOC/UNESCO and ESA. [Available online at https://abstracts.congrex.com/scripts/jmevent/abstracts/FCXNL-09A02a-1739763-1-Lagerloef_OceanObs09_WPP_SurfaceSalinity_final_d.pdf.]

  • Larnicol, G., Guinehut S. , Rio M.-H. , Drevillon M. , Faugere Y. , and Nicolas G. , 2006: The Global Observed Ocean Products of the French Mercator project. Proc. 15 Years of Progress in Radar Altimetry Symp., ESA Special Publ. SP-614, Venice, Italy, ESA.

  • Le Traon, P. Y., Nadal F. , and Ducet N. , 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522533.

    • Search Google Scholar
    • Export Citation
  • Maes, C., and Behringer D. , 2000: Using satellite-derived sea level and temperature profiles for determining the salinity variability: A new approach. J. Geophys. Res., 105 (C4), 85378547.

    • Search Google Scholar
    • Export Citation
  • Marullo, S., Buongiorno Nardelli B. , Guarracino M. , and Santoleri R. , 2007: Observing the Mediterranean Sea from space: 21 years of Pathfinder-AVHRR sea surface temperatures (1985 to 2005): Re-analysis and validation. Ocean Sci., 3, 299310.

    • Search Google Scholar
    • Export Citation
  • Maturi, E., Harris A. , and Sapper J. , 2010: A new ultra high resolution sea surface temperature analyses from GOES-R and NPOESS-VIIRS. Sixth Annual Symp. on Future National Operational Environmental Satellite Systems-NPOESS and GOES-R, Atlanta, GA, Amer. Meteor. Soc., 321. [Available online at http://ams.confex.com/ams/pdfpapers/163136.pdf.]

  • Postnov, A. A., Zhokhova N. V. , and Borisov E. V. , 2007: Correlation between temperature and salinity variations as a characteristic of the North Atlantic waters. Russ. Meteor. Hydrol., 32, 119125.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1995: Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 368, 145149.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, C. E., and Williams C. K. I. , 2006: Covariance functions. Gaussian Processes for Machine Learning, MIT Press, 79–104.

  • Reverdin, G., Kestenare E. , Frankignoul C. , and Delcroix T. , 2007: Surface salinity in the Atlantic Ocean (30°S–50°N). Prog. Oceanogr., 73, 311340, doi:10.1016/j.pocean.2006.11.004.

    • Search Google Scholar
    • Export Citation
  • Sabia, R., and Coauthors, 2010: SMOS measurements preliminary validations against modelled brightness temperatures and external-source salinity data. Proc. Int. Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 3166–3169.

  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography, 21, 1219.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 989 463 107
PDF Downloads 464 102 12